首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
admin
2017-01-21
42
问题
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
选项
答案
旋转体的体积为V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 曲边梯形的面积为s=∫
1
t
f(x)dx,则由题可知 π∫
1
t
f
2
(x)dx=πt∫
1
t
f(x)dx,即∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx。 两边对f求导可得f
2
(t)=∫
1
t
f(x)dx+tf(t),即f
2
(t)一tf(t)=∫
1
t
f(x)dx,(*) 等式两端求导可得2f(t)f’(t)—f(t)一tf’(t)=f(t),化简可得(2f(t)—t)f ’(t)=2f(t),即 [*] 在(*)式中令t=1,则f
2
(1)一f(1)=0,因为已知f(x)>0,所以f(1)=1,代入t=[*] 所以该曲线方程为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/YmH4777K
0
考研数学三
相关试题推荐
设X1,X2为来自正态总体N(μ,σ2)的样本,则X1+X2与X1-X2必().
设A是m×n阶矩阵,下列命题正确的是().
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
设函数f(x)在[0,+∞)上连续、单调不减且f(0)≥0,试证函数在[0,+∞)上连续且单调不减(其中n>0).
设pn=(an+丨an丨)/2,qn=(an-丨an丨)/2,n=1,2,…,则下列命题正确的是
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,P)T.P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.β可由α1,α2,α3唯一地线性表示,并求出表示式;
利用定积分计算下列极限:
一阶常系数差分方程yt+1一4t=16(t+1)4t满足初值y0=3的特解是yt=___________.
设f(x)在(一∞,+∞)上连续,则下列命题中错误的是
随机试题
魏晋最重要的学术现象是()
WhatistheGothicnovel?
室内塑料排水管道系统的检验试验有()。
水利基本建设项目根据其建设规模和投资额分为()。
税务检查是税收征收管理工作中的一项重要内容,下列税务检查的范围不包括()。
基金托管人与基金管理人可为同一人,可以相互出资或者持有股份。()
根据群体的组织化、正规化程度来划分,社会群体可分为()
关于合理情绪疗法的描述以下哪一项是正确的?()
应在公文首页标注签发人的是()。
努力:失败
最新回复
(
0
)