首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x)=(2一t)e-tdt的最值.
求函数f(x)=(2一t)e-tdt的最值.
admin
2018-11-21
81
问题
求函数f(x)=
(2一t)e
-t
dt的最值.
选项
答案
由于f(x)是偶函数,我们只需考察x∈[0,+∞).由变限积分求导公式得 f’(x)=2x(2一x
2
)[*]. 解f’(x)=0得x=0与x=[*],于是 [*] 从而,f(x)的最大值是f([*])=∫
0
2
(2一t)e
-t
dt=一∫
0
2
(2一t)de
-t
=(t一2)e
-t
|
0
2
一∫
0
2
e
-t
dt =2+e
-t
|
0
2
=1+e
-2
. 由上述单调性分析,为求最小值,只需比较f(0)与[*]f(x)的大小.由于 [*]f(x)=∫
0
+∞
(2一t)e
-t
dt=[(t一2)e
-t
+e
-t
]||
0
+∞
=1>f(0)=0, 因此f(0)=0是最小值.
解析
f(x)的定义域是(一∞,+∞),由于它是偶函数,故只需考虑x∈[0,+∞).求f’(x)和驻点并考察驻点两侧的单调性.由于需要考察f(0)是否为最值,还需讨论极限值
f(x).
转载请注明原文地址:https://kaotiyun.com/show/Ypg4777K
0
考研数学一
相关试题推荐
设f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x)≤0.证明函数F(x)=f(t)dt在(a,b)内也有F′(x)≤0.
设二维随机变量(X,Y)服从区域一1≤x≤1,0≤y≤2上的均匀分布,求二次曲面+2x1x2+2Xx1x3=1为椭球面的概率.
求x2y″一xy′+y=x+的通解.
设f(x,y)=证明f(x,y)在点(0,0)处不可微.
若函数F(x,y,z)满足F″xx+F″yy+F″zz=0,证明其中Ω是光滑闭曲面S所围的区域,是F在曲面S上沿曲面S的外向法线的方向导数.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组Ax=b的通解X=().
将函数f(x)=在x=0处展成幂级数.
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分ydS=().
交换积分次序=______。
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是。设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望。
随机试题
简述股权取得日购买法和权益结合法的区别。
患者,男,60岁。糖尿病病史10年,检查:双下肢浮肿,尿蛋白(+++),空腹血糖8.0mmol/L,餐后2小时血糖11.13mmol/L,血压160/100mmHg。其诊断是
化生“天癸”的物质基础是
【案情】孙某与钱某合伙经营一家五金店,后因经营理念不合,孙某唆使赵龙、赵虎兄弟寻衅将钱某打伤,钱某花费医疗费2万元,营养费3000元,交通费2000元。钱某委托李律师向甲县法院起诉赵家兄弟,要求其赔偿经济损失2.5万元,精神损失5000元,并提供
小砌块砌体施工时对砂浆饱满度的要求严于砖砌体的要求。()
【背景资料】某新建办公楼工程,建筑面积48000m2,地下2层,地上6层,中庭高度为9m,钢筋混凝土框架结构。经公开招标投标,总承包单位以31922.13万元中标,其中暂定金额1000万元。双方依据《建设工程合同(示范文本)》(GF一
规范化服务的标准是()。
2015年1~4季度该市人均消费支出八大类中,同比增长的大类占人均消费总支出的比重比同比下降的大类()个百分点。
Youaregoingtoreadalistofheadingsandatextaboutwhatparentsaresupposedtodotoguidetheirchildrenintoadulthood
(46)Ifyouconsultcomparativeglobaleconomicandsocialstatistics,itisnotdifficulttopaintableakpictureofArabfailu
最新回复
(
0
)