首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组Ax=b的通解X=( ).
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组Ax=b的通解X=( ).
admin
2016-11-03
28
问题
设α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α
1
=[1,2,3,4]
T
,α
2
+α
3
=[0,1,2,3]
T
,C表示任意常数,则线性方程组Ax=b的通解X=( ).
选项
A、[1,2,3,4]
T
+C[1,1,1,1]
T
B、[1,2,3,4]
T
+C[0,1,2,3]
T
C、[1,2,3,4]
T
+C[2,3,4,5]
T
D、[1,2,3,4]
T
+C[3,4,5,6]
T
答案
C
解析
根据非齐次线性方程组通解的结构,依次求出其导出组的基础解系及自身的一个特解.
方法一 因r(A)=3,n=4,故导出组Ax=0的一个基础解系只含n一r(A)=4—3=1个解.又根据非齐次线性方程组的两个解的差为其导出组的解,因而
2α
1
一(α
2
+α
3
)=(α
1
一α
2
)+(α
1
一α
3
)=[2,3,4,5]
T
≠0
为其导出组的一个解,因它不等于0,故[2,3,4,5]
T
为其导出组的基础解系.又显然α
1
为其自身的一个特解,故所求通解为
α
1
+C[2α
1
一(α
2
+α
3
)]=[1,2,3,4]
T
+C[2,3,4,5]
T
.仅(C)入选.
方法二 (A)中[1,1,1,1]
T
=α
1
一(α
2
+α
3
),(B)中[0,1,2,3]
T
=α
2
+α
3
及(D)中[3,4,5,6]
T
=3α
1
一2(α
2
+α
3
)都不是AX=0的解(因解向量的系数的代数和不等于0),因而乘以任意常数C后不能构成其导出组的基础解系,故选项(A)、(B)、(D)都不正确.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/jXu4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 B
求下列函数的导数:
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设其中f具有二阶连续偏导数,g具有二阶连续导数,求.
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
将函数f(x)=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
设a>0,f(x)=g(x)=,而D表示整个平面,则I==__________.
Ω是由x2+y2一z2与x=a(a>0)所围成的区域,则三重积分在柱面坐标系下累次积分的形式为()
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为。
随机试题
下列有关口服水合氯醛的描述中正确的是:
语言沟通的主要媒介是
一定量的双原子分子理想气体,在等压过程中对外做功为200J,则在此过程中气体吸收的热量为()。
关于双代号网络计划中的虚箭线,下列说法不正确的是()。
出入境检验检疫的费用一般按月收取。()
事业单位的经营支出是指事业单位开展独立核算的非专业业务活动发生的支出。()
关节的辅助结构不包括()。
公路上一辆公交车以时速40km的速度向前行驶,甲、乙两人一前一后在路边散步,已知甲速度为1m/s,乙的速度为1.5m/s,公交车在超过乙3分钟后追上甲。当公交车在追上甲时两人相距()米。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
Everydaydecisionsaremadethatinfluenceourlivesorbusinesses.WithmenandwomenoccupyingthesamespaceincorporateAm
最新回复
(
0
)