首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组Ax=b的通解X=( ).
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组Ax=b的通解X=( ).
admin
2016-11-03
75
问题
设α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α
1
=[1,2,3,4]
T
,α
2
+α
3
=[0,1,2,3]
T
,C表示任意常数,则线性方程组Ax=b的通解X=( ).
选项
A、[1,2,3,4]
T
+C[1,1,1,1]
T
B、[1,2,3,4]
T
+C[0,1,2,3]
T
C、[1,2,3,4]
T
+C[2,3,4,5]
T
D、[1,2,3,4]
T
+C[3,4,5,6]
T
答案
C
解析
根据非齐次线性方程组通解的结构,依次求出其导出组的基础解系及自身的一个特解.
方法一 因r(A)=3,n=4,故导出组Ax=0的一个基础解系只含n一r(A)=4—3=1个解.又根据非齐次线性方程组的两个解的差为其导出组的解,因而
2α
1
一(α
2
+α
3
)=(α
1
一α
2
)+(α
1
一α
3
)=[2,3,4,5]
T
≠0
为其导出组的一个解,因它不等于0,故[2,3,4,5]
T
为其导出组的基础解系.又显然α
1
为其自身的一个特解,故所求通解为
α
1
+C[2α
1
一(α
2
+α
3
)]=[1,2,3,4]
T
+C[2,3,4,5]
T
.仅(C)入选.
方法二 (A)中[1,1,1,1]
T
=α
1
一(α
2
+α
3
),(B)中[0,1,2,3]
T
=α
2
+α
3
及(D)中[3,4,5,6]
T
=3α
1
一2(α
2
+α
3
)都不是AX=0的解(因解向量的系数的代数和不等于0),因而乘以任意常数C后不能构成其导出组的基础解系,故选项(A)、(B)、(D)都不正确.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/jXu4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 D
A、 B、 C、 D、 C
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设随机变量X和Y都服从正态分布,且它们不相关,则
设正项级数收敛,正项级数发散,则①必收敛.②必发散.③必收敛.④必发散.中结论正确的个数为()
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量.若A可逆,且有A3ξ=λξ,A5ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
求下列平面上曲线积分I=,其中A(0,—1),B(1,0),为单位圆在第四象限部分.
随机试题
低渗性脱水的特点
消毒牛奶的脂肪含量应不低于
《药品管理法》规定对四类药品实行特殊管理,下列药品中,不属于法定特殊管理药品的是
A.肺气肿B.大量胸腔积液C.气胸D.支气管肺炎E.肺空洞肺部叩诊呈过清音的是()
A、痢疾志贺菌B、福氏志贺菌C、变形杆菌D、鲍氏志贺菌E、宋内志贺菌毒力强,所引起的菌痢症状重的是
【2010年第4题】题11~15:一座110/10kV有人值班的重要变电所,装有容量为20MVA的主变压器两台,采用220V铅酸蓄电池作为直流电源,所有断路器配电磁操作机构,最大一台断路器合闸电流为98A。请回答以下问题,并列出解答过程。该变电所选择一
重点研究地区或行业的投资规划的咨询服务称()。
下列关于的说法,正确的有( )。
以下费用计入生产成本的是( )。
简述家园合作的形式。
最新回复
(
0
)