首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。 (Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域; (Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
admin
2020-04-21
93
问题
设曲线L的参数方程为x=φ(t)=t—sint,y=ψ(t)=1一cost(0≤t≤2π)。
(Ⅰ)求证:由L的参数方程可以确定连续函数y=y(x),并求它的定义域;
(Ⅱ)求曲线L与x轴所围图形绕),轴旋转一周所成旋转体的体积V。
选项
答案
(1)由已知可得 φ’(t)=1一cost≥0,φ(0)=0,φ(2π)=2π, 则φ(t)在[0,2π]上单调增加,且值域为[φ(0),φ(2π)]=[0,2π]。 由x=φ(t)=t—sint在[0,2π]上连续可知其在[0,2π]上存在连续的反函数t=φ
—1
(x),且定义域为[0,2π]。所以y(x)=ψ[φ
—1
(x)]在[0,2π]上连续。 (Ⅱ)由旋转体的体积公式(绕y轴旋转),有 V=2π∫
0
2π
xydx=2π∫
0
2π
(t一sint)(1一cost)
2
dt=2π∫
0
2π
t(1一cost)
2
dt, 令t=2w—s,则 V=2π∫
0
2π
(2π—s)(1一coss)
2
ds=4π
2
∫
0
2π
(1一coss)
2
ds—V, [*] 上式中,∫
0
2π
sint(1一cost)
2
dt=∫
—π
π
sint(1一cost)
2
dt=0由周期函数与奇函数的积分性质直接得出。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Z684777K
0
考研数学二
相关试题推荐
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
[20l1年]设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,l,1,]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
设A为m阶实对称矩阵且正定,B为m×n矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是秩(B)=n.
[2015年]设D是第一象限中曲线2xy=1,4xy=1与直线y=x,y=√3x围成的平面区域:函数f(x,y)在D上连续,则f(x,y)dxdy=().
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
求极限。
计算dχdy,其中D为曲线y=lnχ与两直线y=0,y=(e+1)-χ所围成的平面区域.
求极限:.
若极限,则函数f(x)在x=a处
随机试题
知识经济社会企业生存、发展、创新、进步的直接动力成本是()
在事故中受伤的那个人已被送往医院。
Whenmyocardialinfarctionhappens,theremaybeaburningsensationsimilartoindigestionorheartburn.
右冠状动脉分支包括
子宫收缩乏力的病因不包括
下列哪项不是中毒的主要机制
下列哪种症状、体征在右心衰时不常出现
下列说法中,正确的是( )。
现有某查询设计视图(如下图所示),该查询要查找的是
Sleepwalkingisadisordercharacterizedbywalkingorotheractivitiesapersonengagedinwhile【C1】______stillasleep.Itis
最新回复
(
0
)