首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元实二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2, 其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足条件时,二次型f(x1,x2,
设有n元实二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2, 其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足条件时,二次型f(x1,x2,
admin
2021-01-25
137
问题
设有n元实二次型
f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,
其中a
i
(i=1,2,…,n)为实数。试问:当a
1
,a
2
,…,a
n
满足条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型。
选项
答案
方法一:用正定性的定义判别。 已知对任意的x
1
,x
2
,…,x
n
均有f(x
1
,x
2
,…,x
n
)≥0,其中等号成立当且仅当 [*] 方程组仅有零解的充分必要条件是其系数行列式 |B|=[*]=1+(—1)
n+1
a
1
a
2
…a
n
≠0, 即当a
1
,a
2
,…,a
n
≠(一1)
n
时,方程组(*)只有零解,此时f(x
1
,x
2
,…,x
n
)=0。若对任意的非零向量x=(x
1
,x
2
,…,x
n
)≠0,(*)中总有一个方程不为零,则有 f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
>0, 所以,根据正定二次型的定义,对任意的向量(x
1
,x
2
,…,x
n
),如果f(x
1
,x
2
,…,x
n
)≥0,则二次型正定。由以上证明题中f(x
1
,x
2
,…,x
n
)是正定二次型。 方法二:将二次型表示成矩阵形式,有 f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
=(x
1
+x
1
x
2
,x
2
+a
2
x
3
,…,x
n-1
+a
n-1
x
n
,x
n
+a
n
x
1
)[*] [*] 则 f(x
1
,x
2
,…,x
n
)=X
T
B
T
Bx=(Bx)
T
Bx≥0, 当 |B|=[*]=1+(一1)
n+1
a
1
a
2
…a
n
≠0。 即当a
1
.a
2
.….a
n
≠(一1)
n
时,Bx=0只有零解,故当任意的X≠0时,均有f(x
1
,x
2
,…,x
n
)=(Bx)
T
Bx>0,从而由正定二次型的定义,对任意的向量(x
1
,x
2
,…,x
n
),如果f(x
1
,x
2
,…,x
n
)>0,则f(x
1
,x
2
,…,x
n
)是正定二次型。
解析
转载请注明原文地址:https://kaotiyun.com/show/ZAx4777K
0
考研数学三
相关试题推荐
设f(x)连续,则在下列变上限积分中,必为偶函数的是()
[2015年]设总体X~B(m,θ),X1,X2,…,Xn为来自该总体的简单随机样本,为样本均值,则
[2004年]二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x2)2的秩为_________.
[2009年]设A,P为三阶矩阵,PT为P的转置矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则QTAQ为().
设有n元实二次型f(x1,x2,…,xn)=(x1+α1x2)2+(x2+x2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:随机变量X和Y的联合概率密度;
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的相关系数ρ.
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b)其中a、b满足条件0≤a≤b≤a+b≤c.
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{﹣1<X<4}≥a,则a的最大值为().
随机试题
诊断支气管哮喘的主要依据是
常规肺部摄影正确的呼吸方式是
患者,女,50岁。以颊黏膜粗糙感、反复刺激性疼痛就诊。检查:双颊黏膜及下唇红有网状白纹,右颊及唇红损害区有少量充血区。可作为本病的诊断依据的是
A.氯霉素B.氯丙嗪C.甲氧氯普胺D.阿奇霉素E.阿洛司琼可能导致局部缺血性结肠炎的药物是()。
某女士因患有子宫脱垂住院治疗,她向护士询问自己患有该病的原因,护士解答时告知发生子宫脱垂的常见因素,下列错误的是
(2008)下面哪一条不符合饮水供应的有关设计规定?
利率决定于货币供求数量,而货币需求量又是基本取决于人们的流动性偏好。如果人们偏好强,愿意持有的货币数量就增加,当货币的需求大于货币的供给时,利率上升;反之,偏好弱时,对货币的需求下降,利率下降。由此可以推出:
二维数组A[0…8)[0…9],其每个元素占2字节,从首地址400开始,按行优先顺序存放,则元素引A[8,5]的存储地址为
每个applet必须定义为__________的子类。
Science,inpractice,dependsfarlessontheexperimentsitpreparesthanonthepreparednessofthemindsofthemenwhowatch
最新回复
(
0
)