首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值与特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值与特征向量.
admin
2018-05-21
32
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
求A的特征值与特征向量.
选项
答案
A(α
1
,α
2
,…,α
n
) [*] 令P=(α
1
,α
2
,…,α
n
),则P
-1
AP [*] =B,则A与B相似,由|λE-B|=0[*]λ
1
=…=λ
n
=0,即A的特征值全为零,又r(A)=n-1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aα
n
=0α
n
(α
n
≠0),所以A的全部特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/ZKr4777K
0
考研数学一
相关试题推荐
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
已知随机变量X的概率密度为fx(x),则Y—aX+b(a≠0)的概率密度fY(y)等于()
设四维向量组α1=(1,1,4,2)T,α2=(1,一1,一2,6)T,α3=(一3,一1,a,一9)T,β=(1,3,10,a+b)T.问(Ⅰ)当a,b取何值时,β不能由α1,α2,α3线性表出;(Ⅱ)当a,b取何值时,β能由α1,α2,α3线性表出
设A,B是n阶可逆矩阵,满足AB=A+B,则下面命题中正确的个数是()①|A+B|=|A||B|②(AB)一1=B一1A一1③(A—E)x=0只有零解④B—E不可逆
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
进行30次独立测试,测得零件加工时间的样本均值=5.5s,样本标准差s=1.7s.设零件加工时间服从正态分布N(μ,σ2),求零件加工时间的均值μ及标准差σ的置信水平为0.95的置信区间.
某产品废品率为3%,采用新技术后对产品重新进行抽样检验,检查是否产品次品率显著降低,取显著水平为0.05,则原假设为H0:__________,犯第一类错误的概率为__________.
掷两枚均匀的骰子,以X和Y分别表示掷出的最大点数和最小点数,试求随机变量Y关于{X=i)(i=1,…,6)的条件概率分布.问随机变量X和Y是否独立?为什么?
随机试题
由领导者自身某些特殊条件才具有的影响力,称为领导者的【】
设f(1)=1,且f’(1)=2,求
男性,29岁,农民,4天前畏寒、发热、剧烈头疼及全身肌肉痛,体检:球结膜充血,腹股沟可及2枚肿大淋巴结,蚕豆划、质软活动、触痛阳性,肝肋下1.0cm,轻压痛,脾未及,腓肠肌压痛明显。血像:WBC10.8×109/L,中性粒细胞0.84,尿蛋白(+),尿红
患者樊某,男,48岁。小便频数,白如米泔,静止后便器底部有膏糊状沉积物,尿道无热涩刺痛感,舌淡苔白,脉沉。治宜选用()
(2018年)下列各项法律规范中,属于确定性规范的是()。
下列关于金融风险造成的损失的说法,不正确的是()。
下列书法家中不属于河南籍的是()。
关于探究活动,下列说法正确的是()。
试根据新中国成立以来我国公布的教育目的,说明我国教育目的的精神实质是什么,以及应如何实现教育目的。
ChooseFIVEanswersbelowandwritethecorrectletter,A-G,nexttoQuestions16-20.ActivitiesAhavepicnicsBgofishi
最新回复
(
0
)