首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解是(2,1,0,3)T+k(1,-1,2,0)T,如令αi=(ai,bi,ci,di)T, i=1,2,…,5. 试问:(Ⅰ)α1能否由α2,α3,α4线性表出? (Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
已知线性方程组 的通解是(2,1,0,3)T+k(1,-1,2,0)T,如令αi=(ai,bi,ci,di)T, i=1,2,…,5. 试问:(Ⅰ)α1能否由α2,α3,α4线性表出? (Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
admin
2016-10-20
44
问题
已知线性方程组
的通解是(2,1,0,3)
T
+k(1,-1,2,0)
T
,如令α
i
=(a
i
,b
i
,c
i
,d
i
)
T
, i=1,2,…,5.
试问:(Ⅰ)α
1
能否由α
2
,α
3
,α
4
线性表出?
(Ⅱ)α
4
能否由α
1
,α
2
,α
3
线性表出?并说明理由.
选项
答案
(Ⅰ)α
1
可由α
2
,α
3
,α
4
线性表出.因k(1,-1,2,0)
T
是相应齐次方程组Ax=0的通解,则(α
1
,α
2
,α
3
,α
4
)[*]=0,即α
1
-α
2
+2α
3
=0,所以α
1
=α
2
-2α
3
+0α
4
,即α
1
可由α
1
,α
2
,α
3
线性表出. (Ⅱ)α
4
不能用α
1
可由α
1
,α
2
,α
3
线性表出.如果α
4
能用α
1
可由α
1
,α
2
,α
3
线性表出,则r(α
1
可由α
1
,α
2
,α
3
)=r(α
1
可由α
1
,α
2
,α
3
,α
4
)=r(A). 由于Ax=0的基础解系仅一个向量,于是有r(A)=n-1=3.那么,α
1
,α
2
,α
3
线性无关,与α
1
=α
2
-2α
3
相矛盾.
解析
从线性方程组的通解可看出相应齐次方程组的通解,亦可得到列向量组的秩及列向量α
i
之间的联系.
转载请注明原文地址:https://kaotiyun.com/show/ZST4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
[*]
[*]
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
将下列函数展成麦克劳林级数:
设u=f(x,z),而z=z(x,y)是由方程z=x+yψ(z)所确定的隐函数,其中f有连续偏导数,而ψ有连续导数,求du.
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
设有直线及平面π:4x-2y+z-2=0,则直线L().
随机试题
A.丛密绒毛膜B.平滑绒毛膜C.两者均是D.两者均不是对胎儿没有营养作用()
臂丛神经阻滞的方法有________、________和________。
抑制哮喘气道炎症的首选药物是
A.胃肠类疾病B.肌病C.神经系统疾病D.血液系统疾病E.心血管系统疾病氨基糖苷类药物引起的典型药源性疾病是()
为病人进行鼻饲,鼻饲液的温度是
下列关于建筑工程施工许可的表述中,正确的有()。
下列类型的合同中,对于承包人来说承担的风险较大的是()。
从事下列()工作的人员必须取得会计从业资格,持有会计从业资格证书。
社区的划分应坚持有利于开发和利用社区资源,有利于社区居民的民主自治,便于社区管理和服务的原则。()
一家拥有2亿元活期存款、4亿元定期储蓄存款的银行,其准备金为0.52亿元。中央银行的准备金率,活期存款为15%,定期存款为5%,现中央银行将活期存款准备金率提高到16%,那么,这家银行的准备金将发生什么样的变化?
最新回复
(
0
)