首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设数列{an}满足条件:a0=3,a1=1,an—2一n,(n—1)an=0(n≥2)。S(x)是幂级数anxn的和函数。 (Ⅰ)证明:S"(x)一S(x)=0; (Ⅱ)求S(x)的表达式。
设数列{an}满足条件:a0=3,a1=1,an—2一n,(n—1)an=0(n≥2)。S(x)是幂级数anxn的和函数。 (Ⅰ)证明:S"(x)一S(x)=0; (Ⅱ)求S(x)的表达式。
admin
2017-01-21
32
问题
设数列{a
n
}满足条件:a
0
=3,a
1
=1,a
n—2
一n,(n—1)a
n
=0(n≥2)。S(x)是幂级数
a
n
x
n
的和函数。
(Ⅰ)证明:S"(x)一S(x)=0;
(Ⅱ)求S(x)的表达式。
选项
答案
(Ⅰ)证明:由题意得 [*] 因为由已知条件得a
n
=(n+1)(n+2)a
n+2
,(n=0,1,2,0),所以S"(x)=S(x),即 S"(x)—S(x)=0。 (Ⅱ)S"(x)—S(x)=0为二阶常系数齐次线性微分方程,其特征方程为λ
2
—1=0,从而λ=+1,于是 S(x)=C
1
e
—x
+C
2
e
x
,由S(0)=a
0
=3,S’(0)=a
1
=1,得 [*] 解得C
1
=1,C
2
=2, 所以S(x)=e
—x
+2e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/ZnH4777K
0
考研数学三
相关试题推荐
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
设随机变量X和Y,相互独立,且均服从参数为1的指数分布,V=min(X,Y),U=max(X,Y)求(1)随机变量V的概率密度fv(v);(2)E(U+V).
已知函数f(x)满足方程f〞(x)+fˊ(x)-2f(x)=0及fˊ(x)+f(x)=2ex,(1)求f(x)的表达式;(2)求曲线的拐点.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为求Anβ.
设X,Y是两个随机变量,且P{x≤1,Y≤1}=4/9,P{x≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,X和S2分别为样本均值和样本方差.记统计量T=X-S2,则ET=___________.
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(φ(2)=0.977,其中φ(x)是标准正态分布函数
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
如图,连续函数y=f(x)在区间[-3,-2],[2,3]上的图片分别是直径为1的下、上半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=,则下列结论正确的是
随机试题
最常引起病毒性心肌炎的是()
再沸器在开车时应先开()阀,排除()后,再开()阀。
中国封建体制形成的等级和特权观念,宗法制形成的血统论,即使在现代社会里,不论是在民间还是在上层,仍会在人们头脑中时而起着作用,这就是典型的【】
A.知母B.前胡C.厚朴D.细辛E.连翘《中国药典》规定,检查马兜铃酸Ⅰ限量的中药是()。
南园实业公司拖欠海达电脑公司货款7万元,海达电脑公司多次催付没有结果,遂向人民法院申请支付令。法院受理后经过审查,向南园实业公司发出了支付令,限期还款。支付令送达后,南园实业公司以书面形式提出原合同规定价格不合法,愿意付款5.8万元,另1.2万元不应当承担
Theageatwhichyoungchildrenbegintomakemoraldiscriminationsaboutharmfulactionscommittedagainstthemselvesorothers
例如:男:小王,帮我开一下门,好吗?谢谢!女:没问题。您去超市了?买了这么多东西。问:男的想让小王做什么?A开门√B拿东西C去超市买东西
Look!Whatabeautiful______thegirliswearing!
OnMarchI,areader’sletterpublishedinLianheZaobao’sForumpagewiththeheadline"FeedbackfromReadersTakenSeriously"
Complainingaboutfaultygoodsorbadserviceisnevereasy.Ifsomethingyouhaveboughtisfaulty,youareactuallynot【B1】___
最新回复
(
0
)