首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ1=(1,-2,3,2)T,ξ2=(2,0,5,-2)T是齐次线性方程组Aχ=0的基础解系,则下列向量中是齐次线性方程组Aχ=0的解向量的是
设ξ1=(1,-2,3,2)T,ξ2=(2,0,5,-2)T是齐次线性方程组Aχ=0的基础解系,则下列向量中是齐次线性方程组Aχ=0的解向量的是
admin
2019-05-15
80
问题
设ξ
1
=(1,-2,3,2)
T
,ξ
2
=(2,0,5,-2)
T
是齐次线性方程组Aχ=0的基础解系,则下列向量中是齐次线性方程组Aχ=0的解向量的是
选项
A、α
1
=(1,-3,3,3)
T
.
B、α
2
=(0,0,5,-2)
T
.
C、α
3
=(-1,-6,-1,10)
T
.
D、α
4
=(1,6,1,0)
T
.
答案
C
解析
Aχ=0的基础解系为ξ
1
,ξ
2
,若α
i
是Aχ=0的解向量
α
i
可由ξ
1
,ξ
2
线性表出
非齐次线性方程组ξ
1
χ
1
+ξ
2
χ
2
=α
i
有解.逐个α
i
判别较麻烦,合在一起作初等行变换判别方便.
显然r(ξ
1
,ξ
2
)=r(ξ
1
,ξ
2
,ξ
3
)=2,ξ
1
χ
1
+ξ
2
χ
2
=α
3
有解,故α
3
是Aχ=0的解向量,故应选C.而r(ξ
1
,ξ
2
)=2≠r(ξ
1
,ξ
2
,α
i
)=3(i=1,2,4),故α
1
,α
2
,α
4
不是Aχ=0的解向量.
转载请注明原文地址:https://kaotiyun.com/show/Zzc4777K
0
考研数学一
相关试题推荐
已知A=可对角化,求可逆矩阵P及对角矩阵,使P-1AP=.
已知A是m×n矩阵,B是n×p矩阵,如AB=C,且r(C)=m,证明A的行向量线性无关.
(2011年)(I)证明:对任意的正整数n,都有成立.(Ⅱ)设证明数列{an}收敛.
(2000年)设函数f(x)在[0.π]上连续.且试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
(1996年)计算曲面积分其中S为有向曲面z=x2+y2(0≤z≤1),其法向量与z轴正向的夹角为锐角.
(2009年)设Ω={(x,y,z)|x2+y2+z2≤1},则
(Ⅰ)已知A=,则(A*)-1=____________.(Ⅱ)已知A=,则A-1=____________.(Ⅲ)设A,B均为三阶矩阵,E是三阶单位矩阵,已知AB=A一2B,B=,则(A+2E)-1=____________.(Ⅳ)设A=,B=(E
设A,B为两个随机事件,则=__________.
设在一次试验中,事件A发生的概率为p.现进行州欠独立试验,则A至少发生一次的概率为____________;而事件A至多发生一次的概率为____________.
随机试题
李某被甲市某区人民法院以盗窃罪判处有期徒刑3年。请根据案情,回答下列问题:一审宣判之后,被告人在上诉期内上诉,二审法院作出了维持原判的裁定,原判决发生效力之后,有权按照审判监督程序提出抗诉的人民检察院有哪些?()
某街道综合治理委员会共有6名委员:F、G、H、Ⅰ、M、P。其中每一位委员,在综合治理委员会下属的3个分委会中,至少要担任其中一个分委会的委员,每个分委会由3位不同的委员组成。已知的信息如下:6名委员中有一位分别担任3个分委会的委员。F不和G在同一个分委
设相互独立的随机变量X,Y分别服从参数λ1=2和λ2=3的指数分布,则当x>0,y>0时,(X,Y)的概率密度f(x,y)=________
芍药汤的组成药物不包括
暴发性流脑病情危重,死亡率高,患者、家属均可产生焦虑及恐惧心理,护士进行护理时不妥的做法是
宾馆内服务楼梯踏步的最小宽度b、最大高度,l应为:[2012—083]
2,4,1,5,0,6,()
美国近乎残酷的“清关”和“封关”,让无数中国出口纺织品被无情地“冻结”在漫长的运输途中。与“冻结”意思最接近的是( )。
给定程序中,函数fun的功能是用函数指针指向要调用的函数,并进行调用。规定在【2】处使fa指向函数n,在【3】处使fb指向函数f2。当调用正确时,程序输出:x1=5.000000,x2=3.000000,x1*x1+x1*x2=40.000000
Nutrientsarethepartsoffoodthatareimportantforlifeandhealth.Nutrientsareimportantforthreereasons.First,somen
最新回复
(
0
)