首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设 则φ(x)在区间(一∞,+∞)上 ( )
admin
2016-05-03
73
问题
设f(x)在区间(一∞,+∞)上连续且严格单调增,又设
则φ(x)在区间(一∞,+∞)上 ( )
选项
A、严格单调减少.
B、严格单调增加.
C、存在极大值点.
D、存在极小值点.
答案
B
解析
令上式分子为
(x)=(x一a)f(x)一I f(t)dt
=(x—a)f(x)一(x一a)f(ξ)
=(x一a)[f(x)一f(ξ)],
其中,当a<x时,a<ξ<x,从而f(ξ)<f(x);当a>x时,a>ξ>x,从而f(ξ)>f(x).所以不论a<x还是a>x,总有
(x)>0.因此当x≠a时,φ’(x)>0.故可知在区间(一∞,a)与(a,+∞)上φ(x)均严格单调增加.
以下证明在区间(一∞,+∞)上φ(x)也是严格单调增加.事实上,设x∈(a,+∞),则
φ(x
2
)一φ(a)=
一f(a)=f(ξ
2
)一f(a)>0,
其中a<ξ
2
<x
2
<+∞,此ξ
2
可取在开区间(a,x
2
)内.
同理,设x
1
∈(一∞,a),则有
φ(a)一φ(x
1
)=f(a)一f(ξ
2
)>0,
其中一∞<x
1
<ξ
1
<a.合并以上两个不等式,有φ(x
2
)一φ(x
1
)>0.
转载请注明原文地址:https://kaotiyun.com/show/a1T4777K
0
考研数学三
相关试题推荐
当地时间1月15日,美国总统特朗普在白宫椭圆形办公室会见中共中央政治局委员、国务院副总理、中美全面经济对话中方牵头人刘鹤,双方共同出席中美第一阶段经贸协议签署仪式。 刘鹤在协议签署仪式上表示,作为国际事务中负有重要责任的两个伟大国家,正视分歧、管控分歧
当地时间1月15日,美国总统特朗普在白宫椭圆形办公室会见中共中央政治局委员、国务院副总理、中美全面经济对话中方牵头人刘鹤,双方共同出席中美第一阶段经贸协议签署仪式。 刘鹤在协议签署仪式上表示,作为国际事务中负有重要责任的两个伟大国家,正视分歧、管控分歧
国民革命失败的原因是()。
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设A,B是同阶正定矩阵,则下列命题错误的是().
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是().
判断下列级数的绝对收敛性和条件收敛性
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
在求直线l与平面Ⅱ的交点时,可将l的参数方程x=xo+mt,y=yo+nt,z=zo+pt代入Ⅱ的方程Ax+By+Cz+D=0,求出相应的t值.试问什么条件下,t有唯一解、无穷多解或无解?并从几何上对所得结果加以说明.
函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.
随机试题
能够对样本结论的代表性或精确程度作定量估计的抽样方法是【】
运输规模经济原理是指运输规模越大
苏轼的《水调歌头.明月几时有》是一首()。
Whatdoweknowaboutlove?Isit,assomepeoplewouldsuggest,amysteriousforce?Orcanitbeexplainedandpossiblyeven【B1
A.苏合香丸B.至宝丹C.紫雪D.安宫牛黄丸长于开窍醒神,化浊辟秽的是哪个方剂
精气生万物的机理是天地阴阳二气的
木工,男,38岁,工作中右手食指被电锯切割离断。立即将患者送到医院行断指再植。其断指的保存方法应该是用无菌纱布包好放在
房地产抵押时,抵押物登记记载的内容与抵押合同约定的内容不一致的,以()为准。
甲公司采用毛利率法核算乙商品的发出成本。乙商品期初成本48000元,本期购货成本15000元,本期销售收入总额35000元,其中发生销售折让2000元,根据以往经验估计,乙商品的销售毛利率为20%,则乙商品本期期末成本为()元。
差别关税实际上是保护主义政策的产物,是保护一国产业所采取的特别手段。差别关税主要分为()。
最新回复
(
0
)