首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若n阶矩阵A=[α1,α2,…,αn—1,αn]的前n一1个列向量线性相关,后n—1个列向量线性无关,β=α1+α2+…+αn.证明: (1)方程组Ax=β必有无穷多解. (2)若(k1,k2,…,kn)T是Ax=β的任一解,则kn=1.
若n阶矩阵A=[α1,α2,…,αn—1,αn]的前n一1个列向量线性相关,后n—1个列向量线性无关,β=α1+α2+…+αn.证明: (1)方程组Ax=β必有无穷多解. (2)若(k1,k2,…,kn)T是Ax=β的任一解,则kn=1.
admin
2020-03-10
63
问题
若n阶矩阵A=[α
1
,α
2
,…,α
n—1
,α
n
]的前n一1个列向量线性相关,后n—1个列向量线性无关,β=α
1
+α
2
+…+α
n
.证明:
(1)方程组Ax=β必有无穷多解.
(2)若(k
1
,k
2
,…,k
n
)
T
是Ax=β的任一解,则k
n
=1.
选项
答案
(1)因为α
2
,α
3
,…,α
n
线性无关,所以α
2
,α
3
,…,α
n—1
线性无关,而α
1
,α
2
,…,α
n—1
,线性相关,因此α
1
可由α
2
,…,α
n—1
线性表出,r(A)=n一1. 又β=α
1
,α
2
,…,α
n
可由α
1
,α
2
,…,α
n
线性表出,增广矩阵[*]=r(A)=n一1,因此方程组Ax=β必有无穷多解. (2)因为α
1
,α
2
,…,α
n—1
线性相关,故存在不全为零的实数l
1
,l
2
,…,l
n—1
,使 l
1
α
1
+l
2
α
2
+…+l
n—1
α
n
=0,即 [*] 又因r(A)=n一1,故(l
1
,…,l
n—1
,0)
T
是Ax=0的基础解系. 又[*]=α
1
,α
2
,…,α
n
=β, 故(1,1,…,1)
T
是Ax=β的一个特解,于是Ax=β通解是 (1,1,…,1)
T
+k(l
1
,l
2
,…,l
n—1
,0). 因此,当(k
1
,…,k
n—1
)
T
是Ax=β的解时,必有kk
n
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/a8D4777K
0
考研数学三
相关试题推荐
设f(x)=∫01-cosxsint2dt,g(x)=,则当x→0时,f(x)是g(x)的().
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设函数f(x)在x=0处连续.且,则
函数z=x3+y3一3x2-3y2的极小值点是()
设X,Y为两个随机变量,P(X≤1,Y≤1)=,P(X≤1)=P(Y≤1)=,则P{min(X,Y)≤1)=().
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分等于
设,则I,J,K的大小关系为
设常系数线性微分方程y’’+ay’+by=0的通解为y=e-x(C1cosx+C2sinx),其中C1,C2是任意常数,则a+b等于()
设数列{an},{bn}满足ebn=ean-an,且an>0,n=1,2,3,…,证明:(Ⅰ)bn>0;(Ⅱ)若收敛,则收敛。
随机试题
冷饮企业应该设置生产卫生用室,其内部应设
子宫于数天内急剧增大,呼吸困难,不能平卧,听不到胎心,诊断为急性胎儿窘迫。()
发展目标一般包括()。
根据《中华人民共和国商标法》第3条第1款规定,经商标局核准注册的商标为注册商标,商标注册人享有商标()权,受法律保护。
企业向银行或其他金融机构借入的各种款项所发生的利息均应计入财务费用。()
股权投资基金的合格投资者是指具备相应风险识别能力和风险承担能力,投资于单只股权投资资金的金额不低于100万元,且符合相关标准的单位和个人。下列符合相关标准的是()。
Ioftendreamofateacher,Idreamofstandingonthe【M1】______platformintheclassroomandgivelessonstolovelyboys【M2】
钙需求的推荐量是根据人体每天从汗液、尿液等途径损失的钙量,同时考虑钙的吸收效率估算出来的。欧美国家的推荐标准是青少年每天1300毫克,成年人每天1000毫克,而老年人则是1200毫克。不过WHO/FAO联合专家组指出这个标准是基于欧美人群的,并不一定适用于
A、Joiningaclub.B、Usingatimer.C、Puttingthecomputerinthelivingroom.D、Notspendinghoursuninterruptedly.A
HelpYourselfthroughtheHardTimesEveryone,atsomepoint,willsufferaloss—thelossoflovedones,goodhealth,oraj
最新回复
(
0
)