首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若n×r矩阵A的秩为r,其r个列向量为某一齐次线性方程组的一个基础解系,B为r阶可逆矩阵,证明:AB的r个列向量也是该齐次线性方程组的一个基础解系.
若n×r矩阵A的秩为r,其r个列向量为某一齐次线性方程组的一个基础解系,B为r阶可逆矩阵,证明:AB的r个列向量也是该齐次线性方程组的一个基础解系.
admin
2020-09-25
114
问题
若n×r矩阵A的秩为r,其r个列向量为某一齐次线性方程组的一个基础解系,B为r阶可逆矩阵,证明:AB的r个列向量也是该齐次线性方程组的一个基础解系.
选项
答案
设n×r矩阵A的列向量记为A
1
,A
2
,…,A
r
;AB的列向量记为α
1
,α
2
,…,α
r
,则 (α
1
,α
2
,…,α
r
)=(A
1
,A
2
,…,A
r
)B, 从而可知α
1
,α
2
,…,α
r
可由A
1
,A
2
,…,A
r
线性表示,若A
1
,A
2
,…,A
r
为齐次线性方程Cx=0的解,则α
1
,α
2
,…,α
r
也是Cx=0的解. 下证α
1
,α
2
,…,α
r
线性无关. 因为B是可逆矩阵,所以(A
1
,A
2
,…,A
r
)=(α
1
,α
2
,…,α
r
)B
-1
, 从而可知A
1
,A
2
,…,A
r
可由α
1
,α
2
,…,α
r
线性表示,于是α
1
,α
2
,…,α
r
与A
1
,A
2
,…,A
r
等价. 又由于A
1
,A
2
,…,A
r
为Cx=0的基础解系,则A
1
,A
2
,…,A
r
线性无关,故向量组α
1
,α
2
,…,α
r
的秩等于向量组A
1
,A
2
,…,A
r
的秩即为r,于是α
1
,α
2
,…,α
r
也线性无关.所以α
1
,α
2
,…,α
r
也是Cx=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/aWx4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
设u=e—xsin的值为_________.
微分方程y'=1+x+y2+xy2的通解为_________。
已知,A*是A的伴随矩阵,那么A*的特征值是________。
已知α1,α2,α3线性无关,α1+α2,aα2—α3,α1—α2+α3线性相关,则a=___________.
设A,B均为3阶矩阵,且满足AB=2A+B,其中A=,则|B-2E|=_______.
设A,B为随机事件,则P(A)=P(B)充分必要条件是()
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
已知X=AX+B,其中求矩阵X.
随机试题
A、stomachB、headacheC、characterD、churchDch在church中的发音是[t∫],在其他三项中的发音是[k]。stomach胃;headache头疼;charater特征;church教堂。
脑血栓形成患者服用阿司匹林,目的是
乳剂制备时,先将乳化剂加入到水中再将油加入研磨成初乳,再加水稀释的方法为乳剂制备时,使植物油与含碱的水相发生皂化反应,生成新皂乳化剂随即进行乳化的方法为
善于调经止血、柔肝止痛的白芍炮制品是()。
工程项目的招标工作应在()阶段完成。
混凝土及抹灰面涂饰方法一般采用()等方法。
在应收管理模块初始化中,需要录入每笔()的往来业务单据。
(2015.河南)在对待师生关系方面,新课程中教师的教学行为强调()(常考)
阅读下面材料,选好角度,自拟题目,联系实际,写篇不少于600字的文章,除诗歌以外,文体不限。传说,北山愚公家门前有两座大山挡住了路,他下决心要把山平掉,河曲智叟笑他太傻,认为不可能。愚公回答:“我死了有儿子,儿子死了有孙子,子子孙孙是没有穷尽的。这两座山不
法律规定的公安机关在公益方面应当履行的责任义务包括救护、扶助、调解等方面。()
最新回复
(
0
)