首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
admin
2016-04-11
66
问题
设4元齐次线性方程组(I)为
,又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
(1)求线性方程组(I)的基础解系;
(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)由已知,(I)的系数矩阵为 [*] 故(I)的基础解系可取为:(0,0,1,0),(一1,1,0,1). (2)有非零公共解. 将(Ⅱ)的通解代入方程组(I),则有 [*] 解得k
1
=一k
2
,当k
1
=一k
2
≠0时,则向量 k
1
(0,1,1,0)+k
2
(一1,2,2,1)=k
2
[(0,一1,一1,0)+(一1,2,2,1)]=k
2
(一1,1,1,1) 满足方程组(I)(显然是(Ⅱ)的解),故方程组(I)、(Ⅱ)有非零公共解,所有非零公共解是k(一1,1,1,1)(k是不为0的任意常数).
解析
本题(1)求基础解系属基本题目;而(2)主要考查齐次线性方程组通解的概念、两方程组公共解的概念及其求法.注意,寻求两方程组(I)与(Ⅱ)的公共解,也就是寻求它们的解集合的交集合中的向量,或者说在(Ⅱ)的解集合中寻找那些满足方程组(I)的解向量.
转载请注明原文地址:https://kaotiyun.com/show/ayw4777K
0
考研数学一
相关试题推荐
设,则()
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
设正数列{an}满足.则极限=
已知函数z=u(x,y)eax+by,且,确定常数a和b,使函数z=z(x,y)满足方程,则a=,b=.
已知f(x)有连续导数,且=2,则f(x)的一阶麦克劳林展开式为________
设函数y=y(x)由参数方程确定,则曲线y=y(x)在t=1对应点处的曲率半径R=()
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
设某厂商生产某种产品,其产量与人们对该产品的需求量Q相同,价格为P,试利用边际收益与需求价格弹性之间的关系解释|Ep|<1时,价格的变动对总收益的影响.
导出正态分布N(μ,δ2)的数学期望和方差.
随机试题
若彩色摄影的画面背景带有浅绿色,应使用何种滤色镜校正
内分泌腺的结构特点之一是没有
第二类精神药品管理措施包括()。
1902年于海牙订立的《离婚及分居法律冲突与管辖权冲突规范》第2条第1款规定:“离婚的请求非依夫妻的本国法和法院地法均有离婚理由的,不得提出。”该条规范属于国际私法冲突规范的哪种类型?()
某业主投资一建设工程项目,通过招标选择了一家施工单位,并与之签订了合同。合同约定,在施工过程中,若由于业主原因造成窝工,则机械的停工费用和人工窝工费按台班费和工日费的40%结算支付。该工程按如下计划进行:在计划执行过程中,出现了如下事件:
建设工程设计合同区别于建设工程勘察合同的主要权利义务,更加强调的当事人权利义务包括()。
预期理论暗含的假定是()。
北方公司为从事房地产开发业务的上市公司,2008年1月1日,外购位于甲地块上的一栋写字楼,作为自用办公楼,甲地块的土地使用权能够单独计量;2008年3月1日,购入乙地块和丙地块,分别用于开发对外出售的住宅楼和写字楼,至2009年12月31日,该住宅楼和写字
()提出了“儿童中心主义”的思想。
监护人有权处理被监护人财产的法定情形是()。(2012一专一23)
最新回复
(
0
)