设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明:存在ξ∈(a,b)使=0.

admin2019-08-23  33

问题 设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明:存在ξ∈(a,b)使=0.

选项

答案令φ(χ)=f(χ)∫χbg(t)dt+g(χ)∫aχf(t)dt, φ(χ)在区间[a,b]上连续,在区间(a,b)内可导,且 φ′(χ)=[f′(χ)∫χbg(t)dt-f(χ)g(χ)]+[g(χ)f(χ)+g′(χ)∫aχf(t)dt] =f′(χ)∫χbg(t)dt+g′(χ)∫aχ(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ′(ξ)=0,即 f′(ξ)∫ξbg(t)dt+g′(ξ)∫aξf(t)dt=0, 由于g(b)=0及g′(χ)<0,所以区间(a,b)内必有g(χ)>0, 从而就有∫χbg(t)dt>0,于是有[*]=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/azA4777K
0

最新回复(0)