首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明:存在ξ∈(a,b)使=0.
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明:存在ξ∈(a,b)使=0.
admin
2019-08-23
55
问题
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明:存在ξ∈(a,b)使
=0.
选项
答案
令φ(χ)=f(χ)∫
χ
b
g(t)dt+g(χ)∫
a
χ
f(t)dt, φ(χ)在区间[a,b]上连续,在区间(a,b)内可导,且 φ′(χ)=[f′(χ)∫
χ
b
g(t)dt-f(χ)g(χ)]+[g(χ)f(χ)+g′(χ)∫
a
χ
f(t)dt] =f′(χ)∫
χ
b
g(t)dt+g′(χ)∫
a
χ
(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ′(ξ)=0,即 f′(ξ)∫
ξ
b
g(t)dt+g′(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g′(χ)<0,所以区间(a,b)内必有g(χ)>0, 从而就有∫
χ
b
g(t)dt>0,于是有[*]=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/azA4777K
0
考研数学二
相关试题推荐
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若g(t)dt=x2ex,求f(x).
设函数z=z(χ,y)由方程χ=f(y+z,y+χ)所确定,其中f(χ,y)具有二阶连续偏导数,求dz.
证明:当χ>0时,arctanχ+.
证明:曲线上任一点的切线的横截距与纵截距之和为2.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
随机试题
作为一门独立学科的艺术学诞生于()
呼吸性酸中毒应首先处理的问题是
感受寒邪而致的“中寒”是指
小刘的轿车上了交强险和部分商业三者险。某日其将轿车借给同事王某,但不知王某无驾驶证。王某驾驶轿车与他人发生事故,交警认定王某承担全部责任,现在对于对受害人的赔偿问题,发生争议。对此问题,下列说法错误的是:
甲公司主要从事小型电子消费品的生产和销售。A注册会计师负责审计甲公司2016年度财务报表。资料一:A注册会计师在审计工作底稿中记录了所了解的甲公司情况及其环境,部分内容摘录如下:(1)2015年购入的一项股权投资划分为可供出售金融资产,2015年
1949年3月,中共七届二中全会提出全党工作重心的转变,这意味着()
PassageSevenAccordingtothepassage,whatcanwelearnaboutthedatapresentedbyPreis?
Howmanypartsdocsaconversationwithanewfriendusuallyconsistof?Whatdoyoudoin thefirstpartoftheconversation?
A、Wheredryandhumidairmassesmeet.B、Wheretheairbecomeswarmandhumid.C、Whenthunderstormsortornadoesoccur.D、Whent
A、InApril.B、InMay.C、InJuly.D、Notdecidedyet.D题目询问男士什么时候订婚。关键是听到男士说“全由April决定”和“我想我们要等她7月份毕业了”,可判断选项D(还没决定)正确。
最新回复
(
0
)