首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2009年试题,17)设z=f(x+y,x一y,xy),其中f具有二阶连续偏导数,求dz与
(2009年试题,17)设z=f(x+y,x一y,xy),其中f具有二阶连续偏导数,求dz与
admin
2013-12-18
120
问题
(2009年试题,17)设z=f(x+y,x一y,xy),其中f具有二阶连续偏导数,求dz与
选项
答案
由z=f(x+y,x一y,xy)可得[*]则[*]=(f
1
’
+f
2
’
+f
3
’
)dx+(f
1
’
一f
2
’
+xf
3
’
)dy,[*]=f
11
’’
一f
12
’’
+f
13
’’
+f
21
’’
一f
22
’’
+xf
23
’’
+f
3
’
+y(f
31
’’
一f
32
’’
+xf
33
’’
)=f
3
’
+f
11
’’
+(x+y)f
13
’’
一f
22
’’
+(x一y)f
23
’’
+xyf
33
’’
解析
转载请注明原文地址:https://kaotiyun.com/show/b134777K
0
考研数学二
相关试题推荐
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足条件时,二次型f(x1,x2,
(93年)设某产品的成本函数为C=aq2+bq+c,需求函数为q=(d-p).其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b.求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性;
[2008年]如图1.3.3.2所示,曲线段方程为y=f(x),函数f(x)在区间[0,a]上有连续导数,则定积分等于().
(2017年)设函数f(x,y)具有一阶连续偏导数,且df(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=______。
(06年)设函数f(χ)在χ=2的某邻域内可导,且f′(χ)=ef(χ),f(2)=1,则f″′(2)=_______.
设矩阵A=(aij)3×3满足A*=AT,其中A*是A的伴随矩阵,AT为A的转置矩阵。若a11,a12,a13为三个相等的正数,则a11为()
(2011年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2与y=0所围成的区域。(Ⅰ)求边缘概率密度fX(x);(Ⅱ)求条件概率密度fX|Y(x|y)。
[2012年]求极限
(88年)已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
[2012年]已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f’(x)+f(x)-2ex.(1)求f(x)的表达式;(2)求曲线的拐点.
随机试题
验型是保证大型铸件质量、防止铸件产生缺陷所必需的重要工艺操作。但验型容易损坏砂型,所以合型后开型的次数以()次为宜。
设a是一个常数,且f(x)=a,则函数f(x)在点x0处().
波长为λ的X射线,投射到晶格常数为d的晶体上,取k=1,2,3,…,出现X射线衍射加强的衍射角θ(衍射的X射线与晶面的夹角)满足的公式为()。
当均质土坝或心墙坝施工质量不好,坝体坝基渗漏严重,可采用()处理。
债权人与债务人应当在合同中约定,债权人留置财产后,债务人履行债务的期限应当不少于()。
注册会计师运用分析程序的基础就是利用分析()各因素的内在关系。
2013年10月31日,甲公司应收乙公司的一笔货款500万元到期,由于乙公司发生财务困难该笔贷款预计在短期内容无法回收。甲公司已为该债权计提坏账准备100万元。当日甲公司就该项债权与乙公司进行协商,下列协商方案中,属于甲公司债务重组的有()。
A:Todaywearegoingtotalkaboutagreatinvention.Itlookslikeahumanbeing.【T1】________B:It’sarobot.【T2】________
梁朝简文帝诗云:“紫燕跃武,赤兔越空。”两句中赤兔指良马,紫燕亦指良马。李善注谢灵运诗云:“文帝自代还,有良马九匹,一名飞燕骝。”在古代,武威铜马足下的飞燕无疑是用来比喻良马之神速。这种造型让人一看便知其意,所以铜马应直截了当取名为“紫燕骝”或“飞燕骝”,
Themoneyisthere.Sowhyisitnotbeingspent?Thatisthebigpuzzleabouttherichworld’seffortstoimprovehealthinpoo
最新回复
(
0
)