首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,如对任何n维向量b方程组Ax=b总有解,证明方程组A*x=b必有唯一解.
设A是n阶矩阵,如对任何n维向量b方程组Ax=b总有解,证明方程组A*x=b必有唯一解.
admin
2016-10-20
40
问题
设A是n阶矩阵,如对任何n维向量b方程组Ax=b总有解,证明方程组A
*
x=b必有唯一解.
选项
答案
记A=(α
1
,α
2
,…,α
n
),因为对任一个n维向量b,方程组x
1
α
1
+x
2
α
2
+…+x
n
α
n
=b总有解,那么α
1
,α
2
,…,α
n
可以表示任一个n维向量.因此,α
1
,α
2
,…,α
n
可以表示n维单位向量ε
1
=(1,0,0,…,0)
T
,ε
2
=(0,1,0,…,0)
T
,…,ε
n
=(0,0,0,…,1)
T
.从而向量组α
1
,α
2
,…,α
n
与ε
1
,ε
2
,…,ε
n
等价,所以秩r(α
1
,α
2
,…,α
n
)=n,即有|A|≠0.于是|A
*
|=|A|
n-1
≠0.由克莱姆法则可知A
*
x=b有唯一解.
解析
转载请注明原文地址:https://kaotiyun.com/show/bZT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
设A是n×m矩阵,B是m×n矩阵,其中n
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设有一力场,场力的大小与作用点与z轴的距离成反比(比例系数为k),方向垂直于z轴并且指向z轴,试求一质点沿圆弧x=cost,y=1,z=sint从点(1,1,0)依t增加的方向移动到点(0,1,1)时场力所做的功.
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
设A与B均为n,阶矩阵,且A与B合同,则().
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
随机试题
What’sMr.Solomon’spostinthecompany?
患者,男,56岁。既往高血压病史10余年,未规律服用降压药物,近日晨起出现半身不遂,神志清楚,伴口角歪斜,面赤口苦,眩晕,舌红,苔黄,脉弦。该病的针灸治疗主穴为
肾病综合征最常见的并发症为
在抢救急危重患者时,护士应必须准确掌握的抢救技术包括()。
如果第一个资产组合的预期收益为8%,标准差为6%,第二个资产组合的预期收益为8%,标准差为3%,那么投资者通常选择哪个资产组合来投资()。
在上市公司收购中,收购人持有的被收购的上市公司的股票,在收购行为完成后的12个月内不得转让。()
甲想用水果刀捅伤张三,却失手将张三旁的李四捅伤。这种情形在我国刑法中属于()。(2017一专—5、2017一法专一4)
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和(2)单独都不充分,两个条件联合起来也不充分
若函数调用时的实参为变量,以下关于函数形参和实参的叙述中正确的是()。
Hospitals,hopingtocurbmedicalerror,haveinvestedheavilytoputcomputers,smartphonesandotherdevicesintothehandsof
最新回复
(
0
)