首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(2,3,3)T,α2=(1,0,3)T,α3=(3,5,a+2)T,若β1=(4,-3,15)T可由α1,α2,α3线性表示,β2=(-2,-5,a)T不能由α1,α2,α3线性表示,则a=______.
已知α1=(2,3,3)T,α2=(1,0,3)T,α3=(3,5,a+2)T,若β1=(4,-3,15)T可由α1,α2,α3线性表示,β2=(-2,-5,a)T不能由α1,α2,α3线性表示,则a=______.
admin
2017-05-18
59
问题
已知α
1
=(2,3,3)
T
,α
2
=(1,0,3)
T
,α
3
=(3,5,a+2)
T
,若β
1
=(4,-3,15)
T
可由α
1
,α
2
,α
3
线性表示,β
2
=(-2,-5,a)
T
不能由α
1
,α
2
,α
3
线性表示,则a=______.
选项
答案
2
解析
β
1
可由α
1
,α
2
,α
3
线性表示,即方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
有解,β
2
不能由α
1
,α
2
,α
3
线性表示,即方程组y
1
α
1
+y
2
α
2
+y
3
α
3
=β
2
无解.由于这两个方程组的系数矩阵是一样的,因此可联合起来加减消元
(α
1
,α
2
,α
3
,β
1
,β
2
)
无论a为何值,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
系数矩阵的秩与增广矩阵的秩总相等,故方程组总有解,即β
1
必可由α
1
,α
2
,α
3
线性表示.
而方程组y
1
α
1
+y
2
α
2
+y
3
α
3
=β
2
在a=2时由于系数矩阵的秩与增广矩阵的秩不相等,故方程组无解,即β
2
在a=2时不能由α
1
,α
2
,α
3
线性表示,两者取交集得到a=2.
转载请注明原文地址:https://kaotiyun.com/show/bcu4777K
0
考研数学一
相关试题推荐
一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等,以X表示汽车首次遇到红灯前已通过的路口的个数,求X的概率分布(信号灯的工作是相互独立的).
根据题意设X1,X2,…,Xn是一个简单随机样本,因此X1,X2,…,Xn相互独立,且与总体同分布,从而可知[*]
设函数则f(x)在x=0处().
设二维随机变量X和Y相互独立,其概率分布为则下列式子正确的是().
设随机变量X和Y相互独立,X在区间(0,2)上服从均匀分布,y服从参数为1的指数分布,则概率P{X+Y>1}=().
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=_________.
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
设函数Y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
判断下列结论是否正确,并证明你的判断.(I)若xn<yn(n>N),且存在极限,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又∈(a,b)使得极限=A,则f(x)在(a,b)有界;(Ⅲ)若=∞,则使得当0<|x-a|<δ时有界•
随机试题
在细胞周期中的肿瘤细胞,对放射线最敏感的细胞期是
用样本的信息推断总体,样本应该是
6个月婴儿,呕吐,腹泻3天,大便10余次/日,呈蛋花汤样,有腥臭味,尿量极少,皮肤弹性差,前囟、眼窝明显凹陷.四肢厥冷。大便镜检白细胞偶见。血清钠135mmol/L。水的程度和性质为
机体摔伤事故是起重机常见事故,能够造成严重的人员伤亡,以下原因中能够造成机体摔伤事故的是()。
“备案号”栏应填()。“净重”栏应填()。
基金管理人与基金销售机构可以在基金销售协议中约定依据基金销售机构销售基金的保有量提取一定比例的()。
1998年2月,甲与乙发生争吵,甲在盛怒之下将乙打伤。乙当日去医院治疗,花去医药费1000元。1998年10月,乙感觉胸部疼痛,医院检查结果表明,其脾脏因最近几个月受到外伤而肿大,乙花去治疗费3000元。由于乙最近数月并没有受到其他外伤,他便确认其脾脏肿大
设f′(x)连续,f(0)=0,f′(0)=1,则=________.
Therehasbeenmuchspeculationabouttheoriginofbaseball.In1907aspecialcommissiondecidedthatthemodemgamewasinven
DavidHumewasbominEdinburghon26thApril1711toJosephandKatherineHume.Bothparentswereofagood,【C1】al__________no
最新回复
(
0
)