首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方阵A满足A2一A一2层=0,证明A及A+2E都可逆,并求A一1及(A+2E)一1.
设方阵A满足A2一A一2层=0,证明A及A+2E都可逆,并求A一1及(A+2E)一1.
admin
2016-03-05
43
问题
设方阵A满足A
2
一A一2层=0,证明A及A+2E都可逆,并求A
一1
及(A+2E)
一1
.
选项
答案
由A
2
一A一2E=0,得A(A—E)=2E.两端同时取行列式|A(A—E) |=2,即|A||A—E|=2,故|A|≠0,所以A可逆.而由A
2
一A一2E=0可得A+2E=A
2
,两端同时取行列式|A+2E|=|A
2
|=|A|
2
≠0,所以A+2E也可逆.由A(A—E)=2E,得[*]又A
2
一A一2E=0,通过添加项并整理可得(A+2E)(A一3E)=一4E,则有 (A+2E)
-1
(A+2E)(A一3E)=一4(A+2E)
-1
,因此[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/c434777K
0
考研数学二
相关试题推荐
设A,B均为4阶矩阵,它们的伴随矩阵分别为A*与B*,且r(A)=3,r(B)=4,则方程组A*B*x=0()
设函数f(x)在x=0处可导,且f(0)=1,f’(0)=3,求数列极限
设函数f(x)=f(-x),且在(0,+∞)内二阶可导,又f’(x)<0,f”(x)>0,则f(x)在(-∞,0)内的图像是().
设方程xy-zlny+exz=1,存在点(0,1,1)的一个邻域,在此邻域内该方程()
设可微函数f(x)及其反函数g(x)满足关系式∫1f(x)g(t)dt=,则f(x)=________.
向量2a+5b与向量a-b垂直,向量2a+3b与向量a-5b垂直,则=________.
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
设f(x),ψ(x)在点x=0的某邻域内连续,且当x→0时,f(x)是ψ(x)的高阶无穷小,则当x→0时,∫0xf(t)sintdt是∫0xtψ(t)dt的________。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]求出使g(x)取最小值的x值。
已知函数y=y(x)在任意点x处的增量,且当Δx→0时,a是Δx的高阶无穷小,y(0)=π,则y(1)=________。
随机试题
由于线路原因使部分在用业务系统阻断的障碍称为全阻障碍。
Iappreciate______toyourhome.
A.利水通淋B.消痈排脓C.行气消积D.祛瘀止痛
若观察胎儿脸面景观,宜采用哪种诊断法
(一)去甲肾上腺素水溶液加热时,效价降低,是因为发生了以下哪种反应
10kV及以下变电所设计中,一般情况下,动力和照明宜共用变压器,在下列关于设置专用变压器的表述中哪一项是正确的?()
建设民事商事法律关系的特点主要表现在()。
关税
我国在量子雷达领域取得突破,获得百公里级探测威力,相对于传统雷达,探测灵敏度大幅提高。量子雷达能发现隐形飞机的基本原理是()。
在我国,()有权决定特赦。
最新回复
(
0
)