首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求解下列方程: (Ⅰ)求方程xy"=y’lny’的通解; (Ⅱ)求yy"=2(y’2一y’)满足初始条件y(0)=1,y’(0)=2的特解.
求解下列方程: (Ⅰ)求方程xy"=y’lny’的通解; (Ⅱ)求yy"=2(y’2一y’)满足初始条件y(0)=1,y’(0)=2的特解.
admin
2018-11-21
56
问题
求解下列方程:
(Ⅰ)求方程xy"=y’lny’的通解;
(Ⅱ)求yy"=2(y’
2
一y’)满足初始条件y(0)=1,y’(0)=2的特解.
选项
答案
(Ⅰ)此方程不显含y.令p=y’,则原方程化为xp’=plnp. 当p≠1时,可改写为[*],其通解为 ln|lnp|=ln|x|+C,即lnp=C
1
x,即y’=[*]. 这样,原方程的通解即为y=[*]+C
2
,其中C
1
≠0,C
2
为任意常数. 当p=1时,也可以得到一族解y=x+C
2
. (Ⅱ)此方程不显含x.令p=y’,且以y为自变量,[*]=2(p
2
一p). 当p≠0时,可改写为[*],解为p一1=C
1
y
2
. 再利用P=y’,以及初始条件,可推出常数C
1
=1.从而上述方程为变量可分离的方程 y’=1+y
2
→ 其通解为y=tan(x+C
2
). 再一次利用初始条件y(0)=1,即得C
2
=[*].所以满足初始条件的特解为y=tan(x+[*]).
解析
转载请注明原文地址:https://kaotiyun.com/show/c4g4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:ξ∈(a,b)使得f(b)-2f(b-a)2f″(ξ).
求下列各微分方程的通解:(Ⅰ)(3x2+6xy2)dx+(6x2y+4y3)dy=0;(Ⅱ)+x2-lnx)dy=0.
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
求微分方程x(y2-1)dx+y(x2-1)dy=0的通解.
设A=已知方程组Ax=b有无穷多解,求a的值并求其通解.
设二阶常系数线性微分方程y″+ay′+βy=γe2x的一个特解为y=e2x+(1+x)ex.求此方程的通解.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
二维随机变t(X,Y)服从二维正态分布,且X,Y不相关,fX(x),fY(y)分别为X,Y的边缘密度,则在Y=y的条件下,X的条件概率密度函数fX|Y(x|y)为().
设(x1,x2,…,xn)和(x1,x2,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得k1+k2是θ的无偏估计量,且在所有这样的线性估计中方差最小.
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0,设Z=X-Y。(Ⅰ)求Z的概率密度f(z;σ2);(Ⅱ)设Z1,Z2,…,Zn为取自总体Z的简单随机样本,求σ2的最大似然估计量
随机试题
一般植物都喜欢生长在()的土壤上。
阵发性室性心动过速的心电图改变是
患者男,55岁。因心力衰竭使用洋地黄进行治疗。治疗期间的下列医嘱中,护士应对哪项提出质疑和核对()
双代号时标网络计划的特点之一是()。
在固定资产系统中,折旧分配表是编制记账凭证、把折旧分配到成本和费用的依据。
欧洲联盟的本质是()。
求函数的单调区间,并确定对应曲线的凹凸区间及拐点.
近代以来中华民族面临的两大历史任务,就是争取民族独立、人民解放和实现国家富强、人民富裕。关于两者关系,下列说法正确的有()
设矩阵A=(aij)3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵.若a11,a12,a13为三个相等的正数,则a11为
TheCulturalRevivalintheByzantineEmpireBetweentheeighthandeleventhcenturiesA.D,theByzantineEmpirestagedana
最新回复
(
0
)