首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2017-08-31
55
问题
设f(x)二阶连续可导,f(0)=0,f
’
(0)=1,且[xy(x+y)一f(x)y]dx+[f
’
(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f
’
(x)+x
2
y,因为[xy(x+y)一f(x)y]dx+[f
’
(x)+x
2
y]dy=0为全微分方程,所以[*],即f
’’
(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
一2,由f(0)=0,f
’
(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sinx+x
2
一2. 原方程为[xy
2
-(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=0,整理得 (xy
2
dx+x
2
ydy)+2(ydx+xdy)一2(ycosxdx+sinxdy)+(-ysinxdx+cosxdy)=0, 即d([*]x
2
y
2
+2xy一2ysinx+ycosx)=0, 原方程的通解为[*]x
2
y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/cTr4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
[*]
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设π为过直线L:且与平面x一2y+z一3=0垂直的平面,则点M(3,一4,5)到平面π的距离为_______.
设f(x)∈C[一1,1],且(一1,1)内有f"(x)>0且证明:当x∈(一1,1)时,f(x)≥3x.
已知曲线L的方程为起点为A(0,0),终点为B(0,0),计算曲线积分,I=∫L(y+z)dx+(z2一x2+y)dy++x2y2dz.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面,若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.(Ⅰ
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0所确定,其中f,g,h对各变量有连续的偏导数,且,求
求方程karctanx—x=0不同实根的个数,其中k为参数.
随机试题
急性肺水肿诊断最具有特征的是()
关于金融市场的说法,正确的是()。
患者面色萎黄,食少,形寒,神倦乏力,少气懒言,大便溏薄,肠鸣腹痛,每因受寒或饮食不慎而加剧,舌质淡,苔白,脉弱。食后腹胀及呕逆者,可加用
以下哪项措施不利于预防泌尿系感染
下列各选项中,甲的行为不能够成立诈骗罪的有()。
政府的土地供给、住房、金融、财政税收等政策的变更,均会对房地产的()产生影响。
在PowerPoint的演示文稿中,插入超级链接中所链接的目标,不能是()。
随机地掷6枚骰子,求6枚骰子出现的点数之和的期望和方差.
曲线y=1一x+()
Obama’sSuccessIsn’tAllGoodNewsforBlackAmericansA)AsErinWhitewatchedtheelectionresultsheadtowardsvictoryforBa
最新回复
(
0
)