首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
admin
2018-04-15
63
问题
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B
T
AB正定的充分必要条件是r(B)=n.
选项
答案
因为(B
T
AB)
T
=B
T
A
T
(B
T
)T=B
T
AB,所以B
T
AB为对称矩阵, 设B
T
AB是正定矩阵,则对任意的X≠0, X
T
B
T
ABX=(BX)
T
A(BX)>0,所以BX≠0,即对任意的X≠0有BX≠0,或方程组BX=0只有零解,所以r(B)=n. 反之,设r(B)=n,则对任意的X≠0,有BX≠0, 因为A为正定矩阵,所以X
T
(B
T
AB)X=(BX)
T
A(BX)>0, 所以B
T
AB为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/cYr4777K
0
考研数学一
相关试题推荐
设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明f(x)在(0,+∞)内有且仅有一个零点.
求
设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明:存在η∈(一1,1),使得f"(η)+f’(η)=1.
求方程karctanx—x=0不同实根的个数,其中k为参数.
证明拉格朗日中值定理。若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f(ξ)(b一a).
设X1,X2,X3,X4是取自正态总体N(0,4)的简单随机样本,令Y=5(X1-2X2)2+(3X3-4X4)2,求P(Y≤2)。
已知极限求常数a,b,c。
设。将A表示成若干个初等矩阵的乘积;
若α1,α2,α3,β1,β2都是四维列向量,且四阶行列式|α1,α2,α3,β1|=m,|β2,α1,α2,α3|=n,则四阶行列式|α3,α2,α1,β1+β2|等于()。
两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中的概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_______.
随机试题
论述刑事诉讼法的基本原则。
什么是混凝土拌合物的和易性?其包括哪些内容?
下列哪项是青枝骨折的特征
浸润型肺结核与慢性纤维空洞型肺结核分型主要鉴别依据是
细菌引起的口炎由于长期服用白色念珠菌感染引起的
项目信息管理的目的是通过()为项目建设的增值服务。
在罗丹的学生中,__________的作品充满激情和力量,__________擅长以丰满的女儿体作为媒介表现各种不同的艺术境界。
Haveyoueveraskedyourselfwhychildrengotoschool?Youwillprobably【C1】______theygotolearnlanguages,geography,histor
2011年南京市进出口贸易实现:
设g(x)可微,f(x)=ln2(1+g(x))+21n(1+g(x)),f’(1)=1,,则g(1)=
最新回复
(
0
)