首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
admin
2018-06-27
44
问题
给定向量组(Ⅰ)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
选项
答案
思路(Ⅰ)和(Ⅱ)等价用秩来刻画,即 r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=r(β
1
,β
2
,β
3
). (α
1
,α
2
,α
3
|β
1
,β
2
,β
3
) [*] 当a+1=0时,r(α
1
,α
2
,α
3
)=2,而r(α
1
,α
2
,α
3
, β
1
,β
2
,β
3
)=3,因此(Ⅰ)与(Ⅱ)不等价. 当a+1≠0时,r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3. 再来计算r(β
1
,β
2
,β
3
). (β
1
,β
2
,β
3
) [*] 则r(β
1
,β
2
,β
3
)=3(与a无关).于是a+1≠0时(Ⅰ)与(Ⅱ)等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/cik4777K
0
考研数学二
相关试题推荐
没A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设方程的全部解均以,π为周期,则常数a取值为
设u=M(x,y)在全平面上有连续偏导数,作极坐标变换x=rcosθ,y=rsinθ,求与的关系式;
计算二重积分其中D={(x,y)|x2+y2≤x+y}.
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
设y=y(x)是由方程x2+y=tan(x一y)确定的隐函数,且y(0)=0,则y’’(0)=___________.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
微分方程xy’’一y’=x的通解是_______.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n一m,且满足关系AB=O.证明:若n是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分xy[1+x2+y2]dxdy。
随机试题
按计价方式划分合同形式,一般分为()。
某造纸企业为应对桉树原料堆场、原料切片车间、碱回收锅炉车间、烘干车间以及发电机组车间发生的突发事件,制定了相应的应急预案。根据有关规定,关于该企业应急管理工作的说法,正确的有()。
出口信贷主要类型包括( )。
会计核算软件应当按照国家统一的会计制度的规定(),分期结算账目和编制会计报表。
根据《海关法》第五十六条至五十八条的规定,关税的减免分为()
甲公司采用销售百分比法预测资金需要量,预计2012年的销售收入为7200万元,预计销售成本、销售费用、管理费用、财务费用占销售收入的百分比分别为78%、1.2%、14.6%、0.7%,适用企业所得税税率为25%。若甲公司2012年计划股利支付率为60%,则
1,4,3,1,,()
在中央银行与政府的关系中,美国联邦储备系统是独立性较大的模式的典范,试从联储的结构及运行机制上对其独立性进行讨论。
Amongthelowestofthejudicialranks,justicesofthepeaceneverthelessfrequentlyexercisejurisdictionoveravarietyofmi
远期交易的履约方式主要是对冲平仓,也可采用实物交收方式。()
最新回复
(
0
)