首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(χ)在[0,2]上可导,且|f′(χ)|≤M,又f(χ)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M. (2)设f(χ)在[a,b]上二阶可导,|f〞(χ)|≤M,又f(χ)在(a,b)内能取到最小值,证明:|f
(1)设f(χ)在[0,2]上可导,且|f′(χ)|≤M,又f(χ)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M. (2)设f(χ)在[a,b]上二阶可导,|f〞(χ)|≤M,又f(χ)在(a,b)内能取到最小值,证明:|f
admin
2019-08-23
59
问题
(1)设f(χ)在[0,2]上可导,且|f′(χ)|≤M,又f(χ)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M.
(2)设f(χ)在[a,b]上二阶可导,|f〞(χ)|≤M,又f(χ)在(a,b)内能取到最小值,证明:|f′(a)|+|f′(b)|≤M(b-a).
选项
答案
(1)由题意,存在c∈(0,2),使得f(c)=0, 由拉格朗日中值定理,存在ξ
1
∈(0,c),ξ
2
(c,2),使得 f(c)=f(0)=f′(ξ
1
)c, f(2)-f(c)=f′(ξ
2
)(2-c), 于是|f(0)|=f′|(ξ
1
)|c≤Mc,|f(2)|=|f′(ξ
2
)|(2-c)≤M(2-c), 故|f(0)|+|f(2)|≤2M. (2)由题意,存在c∈(a,b),使得f(c)为最小值,从而f′(c)=0, 由拉格朗日中值定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 f′(c)-f′(a)=f〞(ξ
1
)(c-a), f′(b)-f′(c)=f〞(ξ
2
)(b-c), 于是|f′(a)|=|f〞(ξ
1
)|(c-a)≤M(c-a), |f′(b)|=|f〞(ξ
2
)|(b-c)≤M(b-c), 故|f′(a)|+|f′(b)|≤M(b-a).
解析
转载请注明原文地址:https://kaotiyun.com/show/czA4777K
0
考研数学二
相关试题推荐
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
设函数z=z(χ,y)由方程χ=f(y+z,y+χ)所确定,其中f(χ,y)具有二阶连续偏导数,求dz.
设f(x)在x0处n阶可导,且f(n)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n≥2),证明:(1)当n为偶数且f(n)(x0)<0时f(x)在x0处取得极大值;(2)当n为偶数且f(n)(x0)>0时f(x)在x0处取得极小值.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:存在,使得f(η)=η;
设向量组(Ⅰ):α1,α2,α3;(Ⅱ):α1,α2,α3的秩分别为(Ⅰ)=2,秩(Ⅱ)=3.证明向量组α1,α2,α3+α4的秩等于3.
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[-a,a],使得
随机试题
患者自幼双眼上胞下垂,无力抬举,视物时仰首举额张口,或以手提睑。
男性,50岁,低热咳嗽2个月伴右胸痛,今日咯血80ml。体温38℃,呼吸18次/min。体检:神清,心率100次/min,律齐,各瓣膜区未闻及病理性杂音。右上肺少量湿性啰音,左肺呼吸音清。腹软无压痛,肝脾无肿大。此时必要的辅助检查是
患者,男性,65岁。腹部挤压伤后48h发生急性弥漫性腹膜炎。急诊手术发现结肠穿孔,行穿孔处结肠外置、腹腔引流术。术后发热39~C,轻度腹胀。术后第2天尿量由40ml/h以上,逐渐减少至25ml/h以下,患者神志清楚。最先需要采取的治疗措施是
患者生气后胸胁痞满,情志郁闷,恶心呕吐,嗳气不舒,按肝与脾的五行生克乘侮规律,属于
A.呼吸兴奋剂B.袢利尿剂C.强心剂D.镇静剂E.血管扩张剂容易引起Ⅱ型呼衰加重的药物是()
根据我国《招标投标法》,招标人和中标人订立书面合同的时间应当是()。
下列有关市场机制的说法,错误的是()。
如今,孔子学院已成为汉语教学推广与中国文化传播的全球品牌和平台。以孔子为代表的儒家思想从西汉汉武帝到近代五四运动一直处于统治思想地位,在历史变迁面前几经演变。除孔子外,下列属于儒家学派代表人物的还有()。
关于骗取贷款罪与贷款诈骗罪,下列说法不正确的是()
能得到组合框Combo1中最后一个列表项序号的表达式是()。
最新回复
(
0
)