首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且=0,又f’(x)=-2x2+g(x-t)dt,则( ).
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且=0,又f’(x)=-2x2+g(x-t)dt,则( ).
admin
2019-11-25
31
问题
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且
=0,又f’(x)=-2x
2
+
g(x-t)dt,则( ).
选项
A、x=0是f(x)的极大值点
B、x=0是f(x)的极小值点
C、(0,f(0))是曲线y=f(x)的拐点
D、x=0不是f(x)的极值点,(0,f(0))也不是曲线y=f(x)的拐点
答案
C
解析
由
=0得g(0)=g’(0)=0,f’(0)=0,
f’(x)=-2x
2
+
g(x-t)dt=-2x
2
-
g(x-t)d(x-t)=-2x
2
+
g(u)du,
f”(x)=-4x+g(x),f”(0)=0,f”(x)=-4+g’(x),f”(0)=-4<0,
因为f’”(0)=
=-4<0,所以存在δ>0,当0<|x|<δ时,
<0,从而当x∈(-δ,0)时,f”(x)>0,当x∈(0,δ)时,f”(x)<0,选C.
转载请注明原文地址:https://kaotiyun.com/show/d2D4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn为总体X的一个样本,设EX=μ,DX=σ2,试确定常数C,使一CS2的期望为μ2(其中,S2分别为样本X1,X2,…,Xn的均值和方差).
(1)证明(2)设α是满足0<α<的常数,证明
设随机变量X服从(0,2)上的均匀分布,Y服从参数λ=2的指数分布,且X,Y相互独立,记随机变量Z=X+2Y。(Ⅰ)求Z的概率密度;(Ⅱ)求EZ,DZ。
已知当x>0与y>0时,则函数f(x,y)在点(x,y)=(1,1)处的全微分=_________________________。
二阶微分方程y’’+y=10e2x满足条件y(0)=0,y’(0)=1的特解是y=_________________________。
已知总体X服从正态分布N(μ,σ2),X1,…,X2n是来自总体X容量为2n的简单随机样本,当σ2未知时,的期望为σ2,则C=______,DY=________.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
设f(x)与g(x)在x=0的某邻域内连续,f(0)=g(0)≠0,求
设A是n阶方阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
随机试题
下列哪种抗蠕虫药提高机体免疫功能的作用较强:
女性,80岁。慢性咳嗽咳痰20余年,冬季加重。近5年活动后气促。1周前感冒后痰多,气促加剧。近2天嗜睡。血白细胞18.6×109/L,中性粒细胞占90%,动脉血气:pH7.29,PaCO280mmHg,PaO247mmHg,BE-3.5mmol/L。经
A.花椒B.丁香C.小茴香D.高良姜E.干姜能杀虫止痒,治疗虫积腹痛的药物是
下列有关企业破产法中的债权人会议,说法正确的是:
设z=z(x,y)是由方程xz一xy+ln(xyz)=0所确定的可微函数,则等于:11
在日本物业管理活动中,主要呈现的特点有()。
摩托快艇以速率v0行驶,它受到的摩擦阻力与速度的平方成正比,设比例系数为常数k,即可表示为F=-kv2。设快艇的质量为m,当快艇发动机关闭后,求:速度随时间的变化规律。
有人建议朱老师对违纪的学生进行罚款,朱老师拒绝了这一建议,这体现了朱老师()。
以下哪项不是数据流程阻中应包含的基本图素?
Althougheachbabyhasanindividualscheduleofdevelopment,generalpatternsofgrowthhavebeenobservedThreeperiodsofdev
最新回复
(
0
)