首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量U在[-2,2]上服从均匀分布,记随机变量 求:(1)Cov(X,Y),并判定X与Y的独立性; (2)D[X(1+Y)].
设随机变量U在[-2,2]上服从均匀分布,记随机变量 求:(1)Cov(X,Y),并判定X与Y的独立性; (2)D[X(1+Y)].
admin
2016-09-19
142
问题
设随机变量U在[-2,2]上服从均匀分布,记随机变量
求:(1)Cov(X,Y),并判定X与Y的独立性;
(2)D[X(1+Y)].
选项
答案
(1)X,Y的全部可能取值都为-1,1,且 P{X=-1,Y=-1}=P{U≤-1,U≤1}=P{U≤-1}=[*], P{X=-1,Y=1}=P{U≤-1,U>1}=0, P{X=1,Y=-1}=P{U>-1,U≤1}=P{-1<U≤1}=[*], P{X=1,Y=1}=P{U>-1,U>1}=P{U>1}=[*], 所以(X,Y)的分布律及边缘分布律为 [*] 从而E(XY)=(-1)×(-1)×[*]+(-1)×1×0+1×(-1)×[*]=0. EX=(-1)×[*] 故Cov(X,Y)=E(XY)-EX.EY=0-[*]≠0.所以X与Y不独立. (2)D[X(1+Y)]=D(X+XY)=DX+D(XY)+2Cov(X,XY) =DX+D(XY)+2E(X
2
Y)-2EXE(XY). ① 其中EX=[*]. ② E(X
2
)=(-1)
2
×[*]. ③ 此外,由于XY及X
2
Y的分布律分别为 [*] 将②~⑥代入①得 D[X(1+Y)]=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/d3T4777K
0
考研数学三
相关试题推荐
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
下列函数均是x→0时的无穷小,按从低阶到高阶的次序将这函数排列起来:(2)x+x2。;(3)1-cosx2;(4)ln(1+x3/2;(5)sin(tan2x).
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
通过交换积分次序证明:
甲烷分子CH4由4个氢原子与一个碳原子组成,四个氢原子位于正四面体的四个顶点处,碳原子位于四个氢原子所组成的质点系的质心处.现没正四面体的四个顶点为(1,0,0)、(0,1,0)、(0,0,1)和(1,1,1).(1)试求出碳原子的位置;(2)由H—C—H
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
设X,Y是两个随机变量,且P{x≤1,Y≤1}=4/9,P{x≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
随机试题
下列情况中,血浆D-二聚体测定结果正常的是
在应用建设工程数据库时,往往要对其中的数据进行适当的( )。
建筑耐火等级的选定与建筑高度、使用功能、重要性质和火灾扑救难度等要求一致。使用或储存特殊贵重的机器、仪表、仪器等设备或物品时,建筑耐火等级不应低于()级。
律师及其所在事务所在履行职责时可以根据行业公认标准和道德规范出具文件的验证。()
银行在汽车贷款业务开展中是独立作业的,与其他行业、单位无关。()
凡群众发现公安机关、公安民警有违法违纪或失职行为的,可以直接拨打“110”进行监督投诉。()
办公室有不节约的不良习惯,且领导早晚上下班都不怎么关灯,你应该怎么办?
依托于信息技术革命的网络社会改变了人们传统的空间和时间感受。空间和时间都不再是固定的,成为了“流动的空间”和“压缩的时间”。利用高速传播的音像信息,人们可以立刻进入到一个不同的空间,并参与其中;凭借强大的信息存储能力,不同时间发生的事情都能集中为同一个瞬间
Whenwillthemeetingbegin?
HowtoLearnLanguageSuccessfully【B1】______Theycanpickupnewvocabulary,masterrulesorgrammar,andlearntowritein
最新回复
(
0
)