首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X服从[0,θ]上的均匀分布,X1,…,Xn是取自总体X的一个简单随机样本. (Ⅰ)求θ的矩估计量; (Ⅱ)是否为θ的无偏估计量,为什么? (Ⅲ)求θ的最大似然估计量; (Ⅳ)是否为θ的无偏估计量,为什么?
设总体X服从[0,θ]上的均匀分布,X1,…,Xn是取自总体X的一个简单随机样本. (Ⅰ)求θ的矩估计量; (Ⅱ)是否为θ的无偏估计量,为什么? (Ⅲ)求θ的最大似然估计量; (Ⅳ)是否为θ的无偏估计量,为什么?
admin
2018-06-12
82
问题
设总体X服从[0,θ]上的均匀分布,X
1
,…,X
n
是取自总体X的一个简单随机样本.
(Ⅰ)求θ的矩估计量
;
(Ⅱ)
是否为θ的无偏估计量,为什么?
(Ⅲ)求θ的最大似然估计量
;
(Ⅳ)
是否为θ的无偏估计量,为什么?
选项
答案
(Ⅰ)记EX=μ,则μ=EX=θ/2,即θ=2μ.故θ的矩估计量[*]. (Ⅱ)由于[*]=2EX=2μ=θ,因此[*]是θ的无偏估计量. (Ⅲ)对于总体X的样本值χ
1
,…,χ
n
,似然函数 [*] 当θ<max(χ
1
,…,χ
n
)时,L=0. 当0≥max(χ
1
,…,χ
n
),L=[*]是θ的单调减函数,因此当θ=max(χ
1
,…,χ
n
)时,L达到最大值.故θ的最大似然估计量[*]=max(X
1
,…,X
n
). (Ⅳ)为求[*]的期望值,需先求[*]的分布. 因总体X服从[0,θ]上均匀分布,因此X
i
(i=1,…,n)都服从[0,θ]上均匀分布,其分布函数为 [*] 概率密度为 [*] [*]的分布函数记为G(χ),概率密度记为g(χ),则 当χ<0时,G(χ)=0;当χ>0时,G(χ)=1;当0≤χ≤0时, G(χ)=P{[*]≤χ}=P{max(X
1
,…,X
n
)≤χ}=P{[*](X
i
≤χ)}. 由于X
1
,…,X
n
相互独立,于是有 [*] 计算得出[*]不是θ的无偏估计量.
解析
转载请注明原文地址:https://kaotiyun.com/show/dGg4777K
0
考研数学一
相关试题推荐
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中P=;(2)利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明结论.
若f(-1,0)为函数f(χ,y)=e-χ(aχ+b-y2)的极大值,则常数a,b应满足的条件是
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
设平面上连续曲线y=f(χ)(a≤χ≤b,f(χ)>0)和直线χ=a,χ=b及χ轴所围成的图形绕χ轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是_______.
设X1,X2,…,Xn+1是取自正态总体N(0,σ2)的简单随机样本,记,1≤k≤n,则cov()=
设总体X服从参数为N和p的二项分布,X1,X2,…,Xn为取自X的样本,试求参数N和p的矩估计.
设总体X服从正态分布N(ν,σ2),X1,X2,…,Xn是取自总体的简单随机样本,样本均值为,样本方差为S2,则服从χ2(n)的随机变量为()
某厂生产某种产品,正常生产时,该产品的某项指标服从正态分布N(50,3.82),在生产过程中为检验机器生产是否正常,随机抽取50件产品,其平均指标为=51.26(设生产过程中方差不改变),在显著性水平为α=0.05下,检验生产过程是否正常.
设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量.
设A,B同时发生,则C发生.证明:P(C)≥P(A)+P(B)一1.
随机试题
简述高斯竞争排除原理及其推论。
A.血糖B.尿糖C.口服葡萄糖耐量试验D.糖化血红蛋白E.血、尿酮体可反映取血前8~12周血糖水平的检查是
我国金融和货币市场监管机构包括()。
( )案件不能书面裁定先予执行。
发现已经输入并审核通过或者登账的记账凭证有错误的,应当采用()方法进行更正。
关于被冻结单位存款的利息计算的说法中,正确的是()。
创新教育的内容包括()
下列作为加工信息的一些方法和技术,有助于有效地从记忆中提取信息的是()。
请从法学角度评析犯罪的实质定义。
A、Strangers.B、Colleagues.C、Interviewerandinterviewees.D、Classmates.D此题的关键是女士回答中的“sincewegraduated”,表明他们以前应该是同学,故选D。
最新回复
(
0
)