首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下述命题 ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续; ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界; ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
下述命题 ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续; ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界; ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
admin
2016-04-14
80
问题
下述命题
①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;
②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;
③设f(x)在(一∞,+∞)上为正值的连续函数,则
在(一∞,+∞)上也是正值的连续函数;
④设f(x)在(一∞,+∞)上为正值的有界函数,则
在(一∞,+∞)上也是正值的有界函数.
其中正确的个数为( )
选项
A、1.
B、2.
C、3.
D、4.
答案
B
解析
①与③是正确的,②与④是不正确的,理由如下:
①是正确的.设x
0
∈(一∞,+∞),则它必含于某区间[a,b]中,由于题设f(x)在任意闭区间[a,b]上连续,故在x
0
处连续,所以在(一∞,+∞)上连续.论证的关键之处是:函数f(x)的连续性是按点来讨论的,在区间上每一点处连续,就说它在该区间上连续.
③是正确的.设x
0
∈(一∞,+∞),则f(x
0
)>0,且在x
0
处连续.由连续函数的四则运算法则知,
在x
0
处也连续,所以
且在(一∞,+∞)上连续.②是不正确的.反例:设f(x)=x,在区间
这个界与[a,b]有关,容易看出,在区间(一∞,+∞)上f(x)=x就无界了.
④是不正确的.反例:f(x)=e
x2
,在区间(一∞,+∞)上0<f(x)≤1,所以f(x)在(一∞,+∞)上为正值的有界函数,而
在(一∞,+∞)上无界,这是因为当x→±∞时,
故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/Kuw4777K
0
考研数学一
相关试题推荐
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
设函数,其中函数φ具有二阶导数,ψ具有一阶导数,则必有().
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
设函数y=f(x)由参数方程(0<t≤1)确定求f(x)在[1,﹢∞)上的值域
设f(x)在(-∞,+∞)上连续,F(x)=∫0xf(t)dt,则下列命题错误的是().
交换积分次序(x,y)dx=__________.
设fn(x)=Cn1cosx-Cn2cos2x+…+(-1)n-1Cnncos2x,证明:对任意自然数n,方程fn(x)=1/2在区间(0,π/2)内有且仅有一个根.
设f(x)可导,则下列结论正确的是().
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是().
被积函数为幂函数与指数函数的乘积,因此采用分部积分法,将幂函数看作u[*]
随机试题
从权利的角度来看,调制受体依法享有法律赋予市场主体的一切基本权利,这些权利可以统称为【】
核衰变后质量数不变,原子序数减少1的衰变是
压力感受性反射的生理意义是
女,19岁,月经增多10多天。查:贫血貌,皮肤散在出血点,肝脾未扪及;Hb100g/L,WBC10x109/L,血小板25X109/L。骨髓增生活跃,全片可见巨核细胞50个。其可能的疾病是
下列不属于法定丙类传染病的是
根据《预防未成年人犯罪法》,下列未成年人中,可以脱离监护人的监护单独居住的是()。
19世纪以大卫为代表的新古典主义维护的是__________阶级。
技术性听众:这类听众很努力地去听别人的话,他们重视字义、事实和统计数字,但在感受、同情和真正理解方面却做得很不够。下列属于技术性听众的是()。
能力
Turninyourcollectionofindustry-suppliedfreebiesandGoodmanwillsendbackafewreplacementpensbearingtheNoFreeLunc
最新回复
(
0
)