首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下述命题 ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续; ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界; ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
下述命题 ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续; ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界; ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
admin
2016-04-14
59
问题
下述命题
①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;
②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;
③设f(x)在(一∞,+∞)上为正值的连续函数,则
在(一∞,+∞)上也是正值的连续函数;
④设f(x)在(一∞,+∞)上为正值的有界函数,则
在(一∞,+∞)上也是正值的有界函数.
其中正确的个数为( )
选项
A、1.
B、2.
C、3.
D、4.
答案
B
解析
①与③是正确的,②与④是不正确的,理由如下:
①是正确的.设x
0
∈(一∞,+∞),则它必含于某区间[a,b]中,由于题设f(x)在任意闭区间[a,b]上连续,故在x
0
处连续,所以在(一∞,+∞)上连续.论证的关键之处是:函数f(x)的连续性是按点来讨论的,在区间上每一点处连续,就说它在该区间上连续.
③是正确的.设x
0
∈(一∞,+∞),则f(x
0
)>0,且在x
0
处连续.由连续函数的四则运算法则知,
在x
0
处也连续,所以
且在(一∞,+∞)上连续.②是不正确的.反例:设f(x)=x,在区间
这个界与[a,b]有关,容易看出,在区间(一∞,+∞)上f(x)=x就无界了.
④是不正确的.反例:f(x)=e
x2
,在区间(一∞,+∞)上0<f(x)≤1,所以f(x)在(一∞,+∞)上为正值的有界函数,而
在(一∞,+∞)上无界,这是因为当x→±∞时,
故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/Kuw4777K
0
考研数学一
相关试题推荐
设A=*,且α=为矩阵A的特征向量.(Ⅰ)求a,b的值及a对应的特征值λ.(Ⅱ)求正交矩阵Q,使得QTAQ为对角阵.
设f(x)有连续导数,f(x)>0,且对任意x,h,满足f(x+h)=∫xx+hdt+f(x),f(1)=求y=f(x)与两个坐标轴及x=1所围图形绕y轴旋转一周所得旋转体的体积
交换积分次序,则f(x,y)dy=__________.
下列命题①设与均存在,则f(x)在x=x0处必连续.②设f-’(x0)与f+’(x0)均存在,则f(x)在x=x0处必连续.③设f(x0-)与f(x0+)均存在,则f(x)在x=x0处必连续.④设与中至少有一个不存在,则f(x)在x=x0必不可导.
行列式=________·
关于函数f(x,y)=给出以下结论:①|(0,0)=1;②|(0,0)=1;③f(x,y)=0;④f(x,y)=0.其中,正确的个数是().
设A是n阶矩阵,下列结论正确的是().
用泰勒公式求下列极限:
设f(x)=u(x)+v(x),g(x)=u(x)一v(x),并设都不存在,下列论断正确的是()
随机试题
社会意识形态是()
下述有关支气管扩张的描述哪个是错误的
A.慢性规律性的上腹痛B.无规律性的上腹痛C.右上腹绞痛D.左上腹剧痛E.全腹剧痛胆道结石,常表现
下列选项属于空气洁净处理对象的是()。
某投保人为自有的价值10万元的房屋投保火灾保险,甲公司保额为4万元,乙公司保额为8万元,损失为3万元,按比例责任分摊方式甲公司应赔偿()。
市场主体的弱化是指()。
根据《担保法》的规定,下列绝对不得作为担保人的有()。
公司债权人可以以登记于公司登记机关的股东未履行出资义务为由,请求该股东对公司债务不能清偿的部分在未出资本息范围内承担连带赔偿责任。()
Theclearblueskyisdottedwithflutteringlarks.
下列命题正确的是().
最新回复
(
0
)