下述命题 ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续; ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界; ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数

admin2016-04-14  32

问题 下述命题
①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;
②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;
③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数;
④设f(x)在(一∞,+∞)上为正值的有界函数,则在(一∞,+∞)上也是正值的有界函数.
其中正确的个数为(     )

选项 A、1.
B、2.
C、3.
D、4.

答案B

解析 ①与③是正确的,②与④是不正确的,理由如下:
①是正确的.设x0∈(一∞,+∞),则它必含于某区间[a,b]中,由于题设f(x)在任意闭区间[a,b]上连续,故在x0处连续,所以在(一∞,+∞)上连续.论证的关键之处是:函数f(x)的连续性是按点来讨论的,在区间上每一点处连续,就说它在该区间上连续.
③是正确的.设x0∈(一∞,+∞),则f(x0)>0,且在x0处连续.由连续函数的四则运算法则知,在x0处也连续,所以且在(一∞,+∞)上连续.②是不正确的.反例:设f(x)=x,在区间这个界与[a,b]有关,容易看出,在区间(一∞,+∞)上f(x)=x就无界了.
④是不正确的.反例:f(x)=ex2,在区间(一∞,+∞)上0<f(x)≤1,所以f(x)在(一∞,+∞)上为正值的有界函数,而在(一∞,+∞)上无界,这是因为当x→±∞时,故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/Kuw4777K
0

最新回复(0)