首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
admin
2018-02-07
43
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
由题意可知,线性方程组(2)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中c
1
,c
2
,…,c
n
是任意的常数。 这是因为: 设方程组(1)和(2)的系数矩阵分别为A,B,则根据题意可知AB
T
=O,因此 BA
T
=(AB)
T
=O, 可见A的n个行向量的转置为(2)的n个解向量。 由于B的秩为n,所以(2)的解空间的维数为2n—r(B)=2n一n=n,又因为A的秩等于2n与(1)的解空间的维数的差,即n,因此A的n个行向量是线性无关的,从而它们的转置向量构成(2)的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/dHk4777K
0
考研数学二
相关试题推荐
[*]
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
证明下列函数在(-∞,+∞)内是连续函数:(1)y=3x2+1(2)y=cosx
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
随机试题
A.出血时延长B.出血时缩短C.凝血时延长D.凝血时缩短E.凝血时与出血时都延长血小板数量少于50×109/L时()
患者,女性,因“间断心悸半个月”入院,入院后经相关检查,诊断为“阵发性室上性心动过速”,导致该患者发生快速性心律失常最常见的发病机制是
郁金除活血止痛、行气解郁外,又能()。
正确、合理的药品广告可以
甲公司在2020年8月31日发现其于2019年6月30日购入的一项管理用固定资产一直未计提折旧,计算各期应纳税所得额时,也未税前列支该项固定资产的折旧费用。该项固定资产的入账成本为400万元,预计使用年限为5年,预计净残值为零,应采用直线法计提折旧。甲公司
以法定需办理抵押物登记的财产之外的其他财产抵押的,可以自愿办理抵押物登记。办理抵押物登记的,登记部门为()。
属于集体合同中的过渡性规定的有()。[2012年11月三级真题]
如果A比B多20%,B比C多20%,那么A比C多( )。
Internet的网络管理是使用的下面的______协议。
有如下程序:#includeusingnamespacestd;classBase{public:Base(intx=0){cout<<x;)};classDerived:pu
最新回复
(
0
)