首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
admin
2018-02-07
63
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
由题意可知,线性方程组(2)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中c
1
,c
2
,…,c
n
是任意的常数。 这是因为: 设方程组(1)和(2)的系数矩阵分别为A,B,则根据题意可知AB
T
=O,因此 BA
T
=(AB)
T
=O, 可见A的n个行向量的转置为(2)的n个解向量。 由于B的秩为n,所以(2)的解空间的维数为2n—r(B)=2n一n=n,又因为A的秩等于2n与(1)的解空间的维数的差,即n,因此A的n个行向量是线性无关的,从而它们的转置向量构成(2)的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/dHk4777K
0
考研数学二
相关试题推荐
[*]
设(X,Y)~N(μ1,μ2;δ12,δ22;ρ),利用条件期望E[X|Y]=μ1+(δ1/δ2)ρ(Y-μ2),证明ρX,Y=ρ.
求下列各函数的导数(其中,a,n为常数):
设D是位于曲线下方、x轴上方的无界区域.当a为何值时,y(a)最小?并求此最小值.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
设矩阵A与B相似,且求a,b的值;
随机试题
Neverlaughatasnowcoveredmountain!Laughterandyelling,duringtheavalancheseason,cancauseadeadlypileofsnow.Huge
治疗小儿原发性肺结核的首选药物是()
角化上皮细胞增多可见于
某6岁小孩玩耍时,误服有机磷农药乐果,大人发现后急送医院就诊,测定胆碱酯酶活力为34%。所测血清胆碱酯酶活力,符合()
离子对被有机溶剂提取的完全程度取决于
甲公司欠乙公司货款100万元,先由甲公司提供机器设备设定抵押权、丙公司担任保证人,后由丁公司提供房屋设定抵押权并办理了抵押登记。甲公司届期不支付货款,下列哪一表述是正确的?(2014年试卷三第8题)
通常用于替代铜及其他有色金属制作如齿轮、轴承、垫圈等的塑料有()。
梁式桥的现浇支架应进行强度和稳定验算的部位有()。
在人民调解工作中,自愿平等原则主要体现在()。
第一印象作用的机制是()。
最新回复
(
0
)