首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式: f(1+sin x)一3f(1一sin x)=8x+α(x), 其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式: f(1+sin x)一3f(1一sin x)=8x+α(x), 其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
admin
2019-08-06
67
问题
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:
f(1+sin x)一3f(1一sin x)=8x+α(x),
其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
选项
答案
求切线方程的关键是求斜率,因f(x)的周期为5,故在点(6,f(6))处和点(1,f(1))处的切线有相同的斜率,根据已知条件求出f’(1). [*] 则4f’(1)=8,f’(1)=2,由f(6)=f(1)=0,f’(6)=f’(1)=2,故所求切线方程为y=2(x-6).
解析
转载请注明原文地址:https://kaotiyun.com/show/dfJ4777K
0
考研数学三
相关试题推荐
设X1,…,X9为来自正态总体X~N(μ,σ2)的简单随机样本,令证明:Z~t(2).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξ∈(a,b),使得f’’(ξ)=f(ξ);
设总体X~N(0,σ2),X1,X2,…,Xn为总体X的简单随机样本,与S2分别为样本均值与样本方差,则().
设A=E-ααT,其中α为n维非零列向量.证明:当α是单位向量时A为不可逆矩阵.
求由方程x2+y2-xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
设f(x)二阶连续可导,且=______.
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零件的平均
设a1=1,当n≥1时,an+1=,证明:数列{an)收敛并求其极限.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
设随机变量X服从标准正态分布N(0,1),令Y=|X|,求Y的概率密度.
随机试题
简述编制时间数列的基本原则。
子宫内膜增生症与高分化的子宫内膜腺癌的区别在于有无
A、上颌乳切牙唇面和邻面B、乳磨牙的牙合面C、乳磨牙的邻面D、乳尖牙的唇面和邻面E、下颌乳切牙唇面和邻面4~5岁儿童乳牙龋好发于
确认死亡的重要征象是
A.β受体阻滞剂B.抗血小板聚集剂C.钙离子拮抗剂D.利尿剂E.硝酸盐类
A公司承接某小区的住宅楼和室外工程的机电安装工程。为尽快完成任务,A公司将小区热力管网工程分包给业主指定的B公司,其管材和阀门由A公司采购。B公司承建的热力管网安装工程于第2年10月完成后,得到业主单独验收顺利通过。A公司承建的总体工程也于第3年1月竣工验
技术创新理论要求企业把以下哪个部门看作是企业最重要的部门?()
如果街道上有人打架斗殴。你身为公安民警,着便衣前去制止.却有围观群众以为你是帮凶,你该怎么办?
在人人都有发言权的微博时代,一个不经意的转发和评论,既可能为真相增添力量,也可能不小心成为谣言的帮闲,甚至可能成为他人的灾难。该如何更好地行使自己的话语权,这是一个值得认真对待的问题。近日《中国青年报》有篇文章谈到,一旦被主观偏见、愤怒情绪、不假思索的责骂
Somepeopleexpectedshort-terminterestratestojumpsoonbecausethey______.Theauthor’sattitudetowardGoldmanSachs’so
最新回复
(
0
)