首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,且满足 ∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt。 证明∫abxf(x)dx≤∫abxg(x)dx。
设f(x),g(x)在[a,b]上连续,且满足 ∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt。 证明∫abxf(x)dx≤∫abxg(x)dx。
admin
2018-12-19
13
问题
设f(x),g(x)在[a,b]上连续,且满足
∫
a
x
f(t)dt≥∫
a
x
g(t)dt,x∈[a,b),∫
a
b
f(t)dt=∫
a
b
g(t)dt。
证明∫
a
b
xf(x)dx≤∫
a
b
xg(x)dx。
选项
答案
令F(x)=f(x)一g(x),G(x)=∫
a
b
F(t)dt,由题设G(x)≥0,x∈[a,b],且G(a)=G(b)=0,G’(x)=F(x)。 从而 ∫
a
b
xF(x)=∫
a
b
xdG(x)=xG(x)|
a
b
一∫
a
b
G(x)dx=一∫
a
b
G(x)dx。 由于G(x)≥0,x∈[a,b],故有一∫
a
b
G(x)dx≤0,即∫
a
b
xF(x)dx≤0。因此可得 ∫
a
b
xf(x)dx≤∫
a
b
xg(x)dx。
解析
转载请注明原文地址:https://kaotiyun.com/show/e3j4777K
0
考研数学二
相关试题推荐
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充分条件是ξTξ=1;
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P一1AP)T属于特征值λ的特征向量是()
设方阵A满足A2一A一2层=0,证明A及A+2E都可逆,并求A一1及(A+2E)一1.
设证明:向量组α1,α2……αn与向量组β1β2……βn等价.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表示.
极限____________.
曲线()
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时f(x)在x=0处可导.
汽艇以27(km/h)的速度,在静止的海面上行驶,现在突然关闭其动力系统,它就在静止的海面上作直线滑行.设已知水对汽艇运动的阻力与汽艇运动的速度成正比,并已知在关闭其动力后20(s)汽艇的速度降为了10.8(km/h).试问它最多能滑行多远?
随机试题
门诊药房发药应实行
太阳中风汗出的机理是
体内氨的去路主要是()
淋巴细胞的表面抗原的检测可用于T淋巴细胞的亚群分类、功能分析等。CD抗原是淋巴细胞表面的分化抗原。其中
培养钩端螺旋体的最佳体温
“备案号”栏应填:“件数”栏应填:
从所给的四个选项中,选择最合适的一个填人问号处,使之呈现一定的规律性。()
[2010年GRK真题]丈夫和妻子讨论孩子上哪所小学为好。丈夫称:根据当地教育局最新的教学质量评估报告,青山小学教学质量不高。妻子却认为:此项报告未必客观准确,因为撰写报告的人中有来自绿水小学的人员,而绿水小学在青山小学附近,两所学校有生源竞争的利害关系,
The(.71)referstotheintegrationofcomplexphysicalmachinerywithnetworkedsensorsandsoftware.Itdrawstogetherfieldssuch
Forachild,happinesshasamagicalnature.Iremembermakinghide-outsinnewly-cuthay,playingcopsandrobbersinthewoods
最新回复
(
0
)