首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( ).
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( ).
admin
2020-06-05
44
问题
设有任意两个n维向量组α
1
,α
2
,…,α
m
和β
1
,β
2
,…,β
m
,若存在两组不全为零的数λ
1
,λ
2
,…,λ
m
和k
1
,k
2
,…,k
m
使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
-k
1
)β
1
+…+(λ
m
-k
m
)β
m
=0,则( ).
选项
A、α
1
,α
2
,…,α
m
和β
1
,β
2
,…,β
m
都线性相关
B、α
1
,α
2
,…,α
m
和β
1
,β
2
,…,β
m
都线性无关
C、α
1
+β
1
,α
2
+β
2
,…,α
m
+β
m
,α
1
-β
1
,α
2
-β
2
,…,α
m
-β
m
线性无关
D、α
1
+β
1
,α
2
+β
2
,…,α
m
+β
m
,α
1
-β
1
,α
2
-β
2
,…,α
m
-β
m
线性相关
答案
D
解析
由题设条件可得
λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+k
1
(α
1
-β
1
)+…+k
m
(α
m
-β
m
)=0
而由λ
1
,λ
2
,…,λ
m
和k
1
,k
2
,…,k
m
不全为零以及向量组线性相关的定义可知,向量组α
1
+β
1
,α
2
+β
2
,…,α
m
+β
m
,α
1
-β
1
,α
2
-β
2
,…,α
m
-β
m
线性相关,故(D)入选.
选项(B),(C)显然不正确,因为由条件推不出其中的任意一组向量线性无关.对于选项(A),当α
1
,α
2
,…,α
m
和β
1
,β
2
,…,β
m
有一个线性无关时,条件也可成立.如令向量组α
1
,α
2
,…,α
m
线性无关,β
1
=0(此时向量组β
1
,β
2
,…,β
m
线性相关),取λ
1
=﹣k
1
≠0,λ
i
=k
i
=0(i=2,…,m),此时题中条件成立,但不能推出α
1
,α
2
,…,α
m
和β
1
,β
2
,…,β
m
都线性相关,故(A)不正确.
转载请注明原文地址:https://kaotiyun.com/show/e8v4777K
0
考研数学一
相关试题推荐
设是从总体X中取出的简单随机样本X1,…,Xn的样本均值,则是μ的矩估计,如果
对于随机变量X1,X2,…,Xn,下列说法不正确的是().
设B为n阶可逆矩阵,A是与B同阶的方阵,且A2+AB+B2=0,则()
设A,B都是n阶可逆矩阵,则().
假设两个正态分布总体X~N(μ1,1),Y~N(μ1,1),X1,X2,…,Xm与Y1,Y2,…,Yn分别是取自总体X和Y的相互独立的简单随机样本.分别是其样本均值,S12与S22分别是其样本方差,则
设函数则f’(x)的零点个数()
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
[2010年]设二次型f(x1,x2,x3)=XTAX在正交变换X=QY下的标准形为y12+y12,且Q的第3列为.求矩阵A;
设有齐次线性方程组Ax=0和Bx=0。其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解.则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解;则秩(A
随机试题
在混凝土理论配合比确定中,混凝土的施工配制强度按照()确定。
骨外膜分为________层:外层为________组织,纤维粗大而密集可横向穿入外环骨板,称________纤维;内层为________结缔组织。
血小板相关抗体检测不包括
多因外感湿热郁于肌表,汗出不彻而发的是
【背景资料】某工程项目部根据当地政府要求进行新冠疫情后复工,按照住建部《房屋市政工程复工复产指南》(建办质(2020)8号)规定制定了《项目疫情防控措施》,其中规定有:(1)施工现场采取封闭式管理。严格施工区等“四区”分离,并设置隔离区和符合标准的隔离
在西方,提出“产婆术”的是()
在教学活动中,教师不能仅满足于“授人以鱼”,更要做到“授人以渔”,这说明教学中应该重视________。
科学家利用蝙蝠飞行的原理发明了声呐和雷达,其中促进科学家问题解决的主要因素是()。(2015·海南)
以下合法的赋值语句是______。
It’sthefirstquestionparentsaskwhentheirchildisdiagnosedwithautism(自闭症).Willhisfuturebrothersorsistershavea
最新回复
(
0
)