(1999年)设函数y(x)(x≥0)二阶可导,且y′(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并

admin2019-03-07  22

问题 (1999年)设函数y(x)(x≥0)二阶可导,且y′(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒为1,求此曲线y=y(x)的方程。

选项

答案如图,曲线y=y(x)上点P(x,y)处的切线方程为Y—y(x)=y′(x)(X—x),所以切线与x轴的交点为[*] [*] 由于y′(x)>0,y(0)=1,因此y(x)>0(x>0),于是 [*] 根据题设2S1一S2=1,即[*]两边对x求导并化简得yy"=(y′)2,这是可降阶得二阶常微分方程,令p=y′,则 [*] 则上述方程可化为[*]分离变量得[*]解得p=C1y,即[*]从而有 y=eC1x+C2 根据y(0)=1,y′(0)=1,可得C1=1,C2=0,故所求曲线得方程为y=ex

解析
转载请注明原文地址:https://kaotiyun.com/show/eH04777K
0

相关试题推荐
最新回复(0)