首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论: (1)aij=AijATA=E且|A|=1; (2)aij=-AijATA=E且|A|=-1.
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论: (1)aij=AijATA=E且|A|=1; (2)aij=-AijATA=E且|A|=-1.
admin
2016-09-19
51
问题
设A为n(n≥3)阶非零实矩阵,A
ij
为A中元素a
ij
的代数余子式,证明下列结论:
(1)a
ij
=A
ij
<=>A
T
A=E且|A|=1;
(2)a
ij
=-A
ij
<=>A
T
A=E且|A|=-1.
选项
答案
(1)当a
ij
=A
ij
时,有A
T
=A
*
,则A
T
A=AA
*
=|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以tr(AA
T
)=[*]a
ij
2
>0.而tr(AA
T
)=tr(|A|E)=n|A|,这说明|A|>0.在AA
T
=|A|E两边取行列式,得|A|
n-2
=1,|A|=1. 反之,若A
T
A=E且|A|=1,则A
*
A=|A|E=E且A可逆,于是,A
T
A=A
*
A,A
T
=A
*
,即a
ij
=A
ij
. (2)当a
ij
=-A
ij
时,有A
T
=-A
*
,则A
T
A=-A
*
A=-|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以|A|=[*]<0.在A
T
A=-|A|E两边取行列式得|A|=-1. 反之,若A
T
A=E且|A|=-1,由于A
*
A=|A|E=-E,于是,A
T
A=-A
*
A.进一步,由于A可逆,得A
T
=-A
*
,即a
ij
=-A
ij
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ejT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
A、 B、 C、 D、 D
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设矩阵A=(nij)3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵.若a11,a12,a13为三个相等的正数,则a11为____________.
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_______.
随机试题
关于耳蜗微音器电位的叙述,错误的是
论述用高尚的人生目的指引人生方向的原因。
低钾血症时,体内并不一定缺钾的情况有哪些
患者,女,22岁。去某医院行拔牙术,注射麻药时,患者出现头晕、恶心、胸闷、四肢无力。查体:血压90/60mmHg,脉搏65次/分,面部及口唇苍白。对该患者上述情况的正确处理是()。
()是指依照公司法规定和依中华人民共和国证券法第一百一十七条规定批准的从事证券经营业务的有限责任公司或者股份有限公司。
背景:某幕墙公司通过招投标从总承包单位承包了某机关办公大楼幕墙工程施工任务。承包合同约定,本工程实行包工包料承包,合同工期180个日历天。在合同履行过程中发生了以下事件:事件一:按照合同约定,总承包单位应在8月1日交出施工场地,但由于总
Iwon’tpay$200forthisarticle,it’snotworth().
资产负债表中“固定资产清理”项目根据固定资产清理科目的贷方余额填列,如果是借方余额以负号表示。()
设x-(a+bcosx)sinx为x=0时x的5阶无穷小,求a,b的值.
[*]
最新回复
(
0
)