首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[20l0年] 设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
[20l0年] 设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
admin
2019-04-05
57
问题
[20l0年] 设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ
2
+η
2
.
选项
答案
将待证等式改写为f′(ξ)一ξ
2
=η
2
一f′(η),从而想到构造辅助函数F(x)=f(x)一x
3
/3,分别在区间[0,1/2],[1/2,1]上使用拉格朗日中值定理. 证 令F(x)=f(x)一x
3
/3,则F(0)=F(1)=0.对F(x)在[0,l/2]上使用拉格朗日中值定理得到:存在ξ∈(0,1/2),使 [*]=F′(ξ)=f′(ξ)一ξ
2
. ① 又在[1/2,1]上对F(x)用拉格朗日中值定理得到:存在η∈(1/2,1),使 [*]=F′(η)一f′(η)一η
2
, ② 由式①+式②得到[*]=f(ξ)一ξ
2
+f′(η)一η
2
,即 [*]=0=f′(ξ)一ξ
2
+f′(η)一η
2
, 故 f′(ξ)+f′(η)=ξ
2
+η
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/fXV4777K
0
考研数学二
相关试题推荐
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
证明3阶矩阵
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
判断下列函数的单调性:
证明:r(A)=r(ATA).
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
随机试题
崔老师在“制作Flash动画一引导层动画”课程教学结尾时,布置了一个创作任务并且给出了一个评价量表,量表的具体内容如下:小明对Flash一直比较熟悉,在班上也学得最好。通过这个评价量表,小明拿了一百分,可是班上也有好几个同学拿了一百分,崔老师发现这个评
生育保险
影片《黑客帝国》的导演是()
男性,21岁,股骨下端疼痛1个月,内侧局部肿胀1周;局部明显压痛,无发热,无活动性疼痛,X线:髁上内侧皮质破坏,诊断最可能为
关于屋面细石混凝土找平层的说法,错误的是()。
依据《招标投标法》某建设单位就一个办公楼群项目的项目招标,则该项目的评标工作由()来完成。
下列关于依法执教的特点的说法,错误的是()。
下列属于问题解决的是()
甲数次临摹某著名画家的画作,然后署上该大师的签名并加盖仿刻的印章,对外谎称真迹售得20万元。对甲的行为应如何定罪()
Jonny:Hey!I’mjustpracticingTaiChi(太极).Wouldyouliketojoinme?Peter:Iknownothingaboutit.Isitdifficult?Jonny:
最新回复
(
0
)