首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 证明g’(x)是单调增加的。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 证明g’(x)是单调增加的。
admin
2022-10-08
62
问题
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数
g(x)=∫
-a
a
|x-t|f(t)dt,a>0,x∈[-a,a]
证明g’(x)是单调增加的。
选项
答案
g(x)=∫
-a
a
|x-t|f(t)dt=∫
-a
x
(x-t)f(t)dt+∫
x
a
(t-x)f(t)dt =x∫
-a
x
f(t)dt-∫
-a
x
tf(t)dt+∫
x
a
tf(t)dt-x∫
x
a
f(t)dt 因f(t)连续,故上式右边可导,于是 g’(x)=∫
-a
x
f(t)dt+xf(x)-xf(x)-xf(x)-∫
x
a
f(t)dt+xf(x) =∫
-a
x
f(t)dt+∫
a
x
f(t)dt g"(x)=2f(x) ① 又因f(x)>0,知g"(x)>0,由此可以得出g’(x)为单调增函数。
解析
转载请注明原文地址:https://kaotiyun.com/show/fYR4777K
0
考研数学三
相关试题推荐
设f(x)连续,且求f(0).
2设则
(1)设α1,α3,β1,β2均为3维列向量,且α1,α3线性无关,β1,β2线性无关,证明存在非零向量ξ,使得ξ既可由α1,α3线性表示,又可由β1,β2线性表示;(2)当时,求所有的既可由α1,α2线性表示,又可由β1,β2线性表示的向量ξ.
设f(x)在(-∞,+∞)内二阶可导,且f"(x)>0,f(0)=0,证明:在(-∞,0)和(0,+∞)都是单调增加的.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,试证在(0,1)内至少存在一点ξ,使
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
设函数f(x)具有连续的二阶导数,且点(0,f(0))是函数y=f(x)对应曲线的拐点,则
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得成立.
曲线y=ex与该曲线经过原点的切线及y轴所围成的平面图形的面积为()
过曲线y=x2(x≥0)上某点处作切线,使该曲线、切线与x轴所围成的面积为,求切点坐标、切线方程,并求此图形绕x轴旋转一周所成立体的体积.
随机试题
以下因素中,不会引起病理性颅内压增高的是
中央处理器有两种工作状态,当它处于目态时不允许执行的指令是()
细菌性痢疾的临床表现不包括
甲公司在面积为10000m2。的土地上开发建设一写字楼,建筑覆盖率为45%,总楼层为6层,一层和二层面积相等,三层以上为标准层,总建筑面积为20000m2。建成后,某房地产估价机构接受甲公司委托对该写字楼进行估价,经查验会计凭证以及会计师事务所的审计报告,
下面关于水泥混凝土路面施工说法错误的是()
“一带一路”是我国基于古代丝绸之路的历史符号所构建的推动国际经贸交流与合作的顶层国家发展倡议。下列历史人物中未曾对古代丝绸之路的开拓与发展做出突出贡献的是:
东汉末年发动黄巾起义的民间教派是
项目验收阶段监理工作的主要内容不包括________。
数据管理技术发展的三个阶段中,()没有专门的软件对数据进行管理。I.人工管理阶段II.文件系统阶段III.数据库阶段
Whattimeisit?
最新回复
(
0
)