设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1一un)绝对收敛.

admin2015-07-10  40

问题 设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1一un)绝对收敛.

选项

答案由|un+1一un|=|f(un)一f(un-1)|=|f’(ξ1)||un一un-1|≤q|un一un-1|≤q2|un-1一un-2|≤…≤qn|u1一u0|且[*]绝对收敛.

解析
转载请注明原文地址:https://kaotiyun.com/show/gVU4777K
0

相关试题推荐
最新回复(0)