首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有 其中Ω(f)={(x,y,z)|x2+y2+z2≤t2),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫0t
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有 其中Ω(f)={(x,y,z)|x2+y2+z2≤t2),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫0t
admin
2018-09-25
67
问题
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有
其中Ω(f)={(x,y,z)|x
2
+y
2
+z
2
≤t
2
),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫
0
t
r
2
f(r)dr+tf(r)=2t
4
,且f(0)=0.
选项
答案
D(t)={(x,y)|x
2
+y
2
≤t
2
},∑(t)={(x,y,z)|x
2
+y
2
+z
2
=t
2
},L(t)={(x,y)|x
2
+y
2
=t
2
},且 [*] =∫
0
2π
dθ∫
0
π
sinφdφ∫
0
t
r
2
f(r)dr=4π∫
0
t
r
2
f(r)dr, [*] =∫
0
2π
dθ∫
0
t
r
2
f(r)dr=2π∫
0
t
r
2
f(r)dr, [*] 由题设条件,有 47π∫
0
t
r
2
f(r)dr+2πtf(t)=2π∫
0
t
r
2
f(r)dr+4πt
4
, 即 ∫
0
t
r
2
f(r)dr+tf(f)=2t
4
. 又t≠0,则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gcg4777K
0
考研数学一
相关试题推荐
求下列区域力的体积:(Ⅰ)Ω:x2+y2≤a2,z≥0,z≤mx(m>0);(Ⅱ)Ω:由y2=a2-az,x2+y2=ax,z=0(a>0)围成;(Ⅲ)Ω:由z=x2+y2,x+y+z=1所围成.
经过两个平面∏1:x+y+1=0,∏2:x+2y+2z=0的交线,并且与平面∏3:2x-y-z=0垂直的平面方程是__________.
与直线L1:及直线L2:都平行且经过坐标原点的平面方程是____________.
已知E=,其中r={x,y,z},r=|r|,q为常数,求divE与rotE.
I=dy,其中L是椭圆周=1.取逆时针方向.
函数f(x)=x2,x∈[0,π],将f(x)展开为以2π为周期的傅里叶级数,并证明
求方程y″+2my′+n2y=0的通解;又设y=y(x)是满足y(0)=a,y′(0)=b的特解,求y(x)dx,其中m>n>0,a,b为常数.
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E—A2|=0.
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X).试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ))Y=|(X一1)|的分布函数F(y).
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
随机试题
与东方文化相比,英美文化偏好()
慢性肾功能衰竭时最常见的电解质紊乱
关于尿沉渣显微镜检查的评价,正确的是
A.瞬时B.1~2周C.2~3周D.3~4周E.4~12周糖化血红蛋白A反映取血前血糖水平的时间是
防己的功效是桑寄生的功效是
糖尿病患者需留尿做尿糖定量检查,合适的尿标本采集方法是
报表系统中,设置B8单元的计算公式:B8=QM(“1001”,月)+QM(“1002”,月),其设置过程执行了下面的()操作。
自然资源按照其与人类的经济关系划分,可划分为()。
学生在学习过程中需要获得鼓励,这种观点符合联结一试误学习基本规律中的()
以下关于过程及过程参数的描述中,错误的是( )。
最新回复
(
0
)