首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有 其中Ω(f)={(x,y,z)|x2+y2+z2≤t2),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫0t
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有 其中Ω(f)={(x,y,z)|x2+y2+z2≤t2),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫0t
admin
2018-09-25
40
问题
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有
其中Ω(f)={(x,y,z)|x
2
+y
2
+z
2
≤t
2
),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫
0
t
r
2
f(r)dr+tf(r)=2t
4
,且f(0)=0.
选项
答案
D(t)={(x,y)|x
2
+y
2
≤t
2
},∑(t)={(x,y,z)|x
2
+y
2
+z
2
=t
2
},L(t)={(x,y)|x
2
+y
2
=t
2
},且 [*] =∫
0
2π
dθ∫
0
π
sinφdφ∫
0
t
r
2
f(r)dr=4π∫
0
t
r
2
f(r)dr, [*] =∫
0
2π
dθ∫
0
t
r
2
f(r)dr=2π∫
0
t
r
2
f(r)dr, [*] 由题设条件,有 47π∫
0
t
r
2
f(r)dr+2πtf(t)=2π∫
0
t
r
2
f(r)dr+4πt
4
, 即 ∫
0
t
r
2
f(r)dr+tf(f)=2t
4
. 又t≠0,则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gcg4777K
0
考研数学一
相关试题推荐
设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则
设a,b,c为非零常数,求以曲线Г:为准线,母线平行于l=(a,b,c)的柱面S的方程.
设Q(x,y)在Dxy平面有一阶连续偏导数,积分∫L2xydx+Q(x,y)dy与路径无关.t恒有2xydx+Q(x,y)dy,(*)求Q(x,y).
求曲面积分I=xz2dydz-sinxdxdy,其中S为曲线(1≤z≤2)绕z轴旋转而成的旋转面,其法向量与z轴正向的夹角为锐角.
函数f(x)=x2,x∈[0,π],将f(x)展开为以2π为周期的傅里叶级数,并证明
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=e4πt2+dxdy,试求f(t).
求方程y″+2my′+n2y=0的通解;又设y=y(x)是满足y(0)=a,y′(0)=b的特解,求y(x)dx,其中m>n>0,a,b为常数.
设A是n阶矩阵,证明存在非0的n阶矩阵B使AB=0的充分必要条件是|A|=0.
设函数f(x)在[0,π]上连续,且f(x)sinxdx=0,f(x)cosxdx=0.证明:在(0,π)内.f(x)至少有两个零点.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,X(n)=max(X1,…,Xn).(Ⅰ)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使=bX(n)均为θ的无偏估计,并比较其有效性;(Ⅲ)应用切比雪夫不
随机试题
下列哪个药物的主要临床用途为治疗脊髓灰质炎后遗症和儿童脑型麻痹症
女性尿毒症患者,30岁,出现胸痛,心包摩擦音。由于未及时治疗,该患者出现大量心包积液,这时可能出现的体征
下列不属于马斯洛需要层次论的层次内容是
A.核酸B.蛋白质C.酶D.糖蛋白E.脂类组成病毒衣壳的成分是
机体内物质转化和能量转化有赖于气的何种功能()
《工程建设项目招标范围和规模标准规定》是( )根据《招标投标法》的规定,制定并公布的。
下列各项中适用于划分务会计期间收入和费用的原则是()。
甲公司目前有两个互斥的投资项目A和B,有关资料如下:资料一:A项目的原始投资额现值为280万元,投资期为2年。投产后第1年的营业收入为140万元,付现成本为60万元,非付现成本为40万元。投产后项目可以运营8年,每年的净现金流量都与投产后第一年相等。A项
涉及旅游者人身安全的事故均为旅游安全事故。()
()是先进生产力和先进文化的创造主体,又是实现自身利益的根本力量。
最新回复
(
0
)