首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
admin
2015-12-22
32
问题
设A是n阶矩阵,a
1
,a
2
,…,a
n
是n维列向量,其中a
n
≠0,若Aa
1
=a
2
,Aa
2
=a
3
,…,Aa
n一1
=a
n
,Aa
n
=0.
(Ⅰ)证明a
1
,a
2
,…,a
n
线性无关;
(Ⅱ)求A的特征值、特征向量.
选项
答案
(1)利用线性无关的定义证之;(2)利用相关矩阵的性质求之. 解 (1)令 k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0. ① 由题设 Aα
1
=α
2
, Aα
2
=α
3
, …, Aα
n一1
=α
n
, 有 A
n
α
1
=A
n一1
α
2
=…=Aa
n
=0. 将A
n一1
左乘式①,得k
1
α
n
=0.由于α
n
≠0,故k
1
=0. 再依次用A
n一2
,A
n一3
,…乘式①,可得 k
2
=k
3
=…=k
n
=0, 所以α
1
,α
2
,…,α
n
线性无关. (2)由于 A[α
1
,α
2
,…,α
n
]=[α
2
,α
3
,…,α
n
,0] [*] 因为α
1
,α
2
,…,α
n
线性无关,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0.又因 秩(A)=秩(B)=n一1, 所以Ax=0的基础解系由n一秩(A)=1个向量组成,由Aα
n
=0·α
n
知,A的线性无关的特征向量为α
n
,全部特征向量为kα
n
,k≠0为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/gwbD777K
0
考研数学二
相关试题推荐
“字字写来都是血,十年辛苦不寻常”和“文不甚深,言不甚俗”分别讲的是中国古典文学中的()。
A、 B、 C、 D、 C每次在图形的两端各加一笔。
A、 B、 C、 D、 D通过观察可以发现,第一套图形中都拥有共同元素两条直线,第二套图形中前两个图形的共同元素是一个大圆和两个小圆,依此规律,只有D项符合这一规律。
能直接证明门捷列夫元素周期表理论正确的是(,)。
证明托尔曼的认知地图理论的实验有()。
根据二阶银行体制下的货币供给实现机制,论述影响与决定货币供应量的主要因素,并在此基础上分析货币供应量的外生性与内生性。货币供给外生性与内生性争论的实质是什么?这一争论有什么样的货币政策意义?[东北财经大学2011研]
材料1:消费者陈女士为在外地大学读书的女儿通过甲快递公司快递一封信件,第3天陈女士接到女儿电话,问为什么还没有收到信件。陈女士很奇怪,便致电甲快递公司,快递公司承认工作人员开封检查了,但对陈女士和其女儿提出的赔偿要求予以拒绝,理由是快递公司有规定
考虑二元函数f(χ,y)在点(χ0,y0)处的下面四条性质:①连续②可微③f′χ(0,y0)与f′y(χ0,y0)存在④f′χ与f′y(χ,y)连续若用“PQ”表示可由性质P推出性质Q,则有().
已知当x>0时函数f(x)一sin(sinx)与x4是等价无穷小量,则f(x)的带皮亚诺余项的四阶麦克劳林公式是f(x)=_________.
随机试题
大陆沉积中()相多位于陆上气候潮湿和地势低洼的地方,常是河流汇集的场所。
男性,38岁,反复出现劳累后四肢无力,活动不能。体检:血压170/100mmHg(22.6/13.3kPa),身高172cm,体重80kg,甲状腺Ⅱ度,心、肺、腹(一)。实验室检查:晨尿pH7.5,比重1.016,镜检(一),血钾3.9mmol/L,钠14
A.硝酸咪康唑栓B.制霉菌素C.曲古霉素D.克林霉素E.聚甲酚磺醛真菌性感染引起的阴道炎首选药物是()。
电线、电缆按制造标准,现场抽样检测()。
下列城镇道路中,不属于根据主要运输性质分类的是()。
下列各项中,()既是职业道德的出发点也是职业道德的归宿。
利用Photoshop调整图像大小,打开“图像大小”对话框后,如果选择“约束比例”(如图所示),那么其目的是()。
收益法
在下面关于社会主义道德与法律的一致性的表述中,正确的有()。
在下列关于面向对象数据库的叙述中,错误的一条是______。
最新回复
(
0
)