首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
admin
2015-12-22
50
问题
设A是n阶矩阵,a
1
,a
2
,…,a
n
是n维列向量,其中a
n
≠0,若Aa
1
=a
2
,Aa
2
=a
3
,…,Aa
n一1
=a
n
,Aa
n
=0.
(Ⅰ)证明a
1
,a
2
,…,a
n
线性无关;
(Ⅱ)求A的特征值、特征向量.
选项
答案
(1)利用线性无关的定义证之;(2)利用相关矩阵的性质求之. 解 (1)令 k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0. ① 由题设 Aα
1
=α
2
, Aα
2
=α
3
, …, Aα
n一1
=α
n
, 有 A
n
α
1
=A
n一1
α
2
=…=Aa
n
=0. 将A
n一1
左乘式①,得k
1
α
n
=0.由于α
n
≠0,故k
1
=0. 再依次用A
n一2
,A
n一3
,…乘式①,可得 k
2
=k
3
=…=k
n
=0, 所以α
1
,α
2
,…,α
n
线性无关. (2)由于 A[α
1
,α
2
,…,α
n
]=[α
2
,α
3
,…,α
n
,0] [*] 因为α
1
,α
2
,…,α
n
线性无关,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0.又因 秩(A)=秩(B)=n一1, 所以Ax=0的基础解系由n一秩(A)=1个向量组成,由Aα
n
=0·α
n
知,A的线性无关的特征向量为α
n
,全部特征向量为kα
n
,k≠0为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/gwbD777K
0
考研数学二
相关试题推荐
在我国古代,常把楼阁看做是神圣、尊贵和威严的象征,许多文学名篇由此诞生,而这些楼阁也因这些文章的流传而声名远扬。其中最有代表性的要数“江南三大名楼”,以下诗句旨在咏叹三大名楼的是()。
以天下为己任是中国士大夫的优良传统,“风声雨声读书声声声入耳,家事国事天下事事事关心”出自()。
《史记》是由司马迁撰写的中国第一部编年体通史。()
将()贯穿决策过程是科学决策的本质特征。
存储器的容量大小是衡量计算机性能的一个重要指标。我们通常把()位二进制作为一个单位来计算存储器的容量,取名为字节。
民族区域自治制度与特别行政区制度是我国宪法制度中具有自身特色的两项制度。下列对这两项制度的表达不正确的是()。
一位教育学教师让每个学生报告他们用于准备考试的时间和考试时答错的题目数:计算用于准备考试的时间和考试时答错的题目数之间的积差相关系数。
《合同法》第68条规定:“应当先履行债务的当事人,有确切证据证明对方有下列情形之一的,可以中止履行:……”民法理论称此种权利为()。
已知x,x是方程4x2n一(3m—5)x一6m2n=0的两个实根,且,则m的值为()。
设A为三阶实对称矩阵,且其特征值为λ1=λ2=1,λ3=0,假设ξ1,ξ2是矩阵A的不同特征向量,且A(ξ1+ξ2)=ξ2.(Ⅰ)证明:ξ1,ξ2正交;(Ⅱ)求方程组AX=ξ2的通解.
随机试题
不能止血的药物是()
牙根形态与稳固性的关系是
可以使用药物避孕的人群是
下列明细分类账户中,可以采用数量金额式的是()。
甲公司是一家化工生产企业,生产单一产品,按正常标准成本进行成本控制。公司预计下一年度的原材料采购价格为10元/千克,运输费为2元/千克,运输过程中的正常损耗为4%,原材料入库后的储存成本为1元/千克。该产品的直接材料价格标准为()元。
宪法是一切国家机关、社会团体和全体公民的最高行为准则。()
A、 B、 C、 D、 A
A、 B、 C、 D、 A
在学生表中建立查询,“姓名”字段的查询条件设置为“IsNull”,运行该查询后,显示的记录是
TipsforThoseWhoTravelAloneA)Whenitcomestotraveling,sometimestakingajourneyalonecanbegreat.Travelingalon
最新回复
(
0
)