首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
admin
2018-09-20
47
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.
证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η).
选项
答案
(1)由积分中值定理知,至少存在一点c∈(a,b),使得 [*] 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G(c)=0, G’(x)=e
-x
f’(x)一e
-x
f(x)=e
-x
[f’(x)一f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b), 使得G’(ξ
1
)=G’(ξ
2
)=0,从而f’(ξ
1
)=f(ξ
1
),f’(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[f’(x)一f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0, 则 F’(x)=e
x
[f"(x)一f’(x)]+e
x
[f’(x)一f(x)]=e
x
[f"(x)一f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
)[*](a,b),使得F’(η)=0,故有 f”(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/hNW4777K
0
考研数学三
相关试题推荐
对二元函数z=f(x,y),下列结论正确的是().
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
设随机变量X服从参数为1的指数分布,则随机变量Y一min(X,2)的分布函数().
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在(0,+∞)内连续且单调减少.证明:∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:求
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0.证明:存在ξ∈(0,1),使得∫0ξf(x)dx=ξf(ξ).
随机试题
板对接平焊时,焊缝处于水平位置,熔滴过渡借助熔滴自重能顺利进行,操作容易。
属于辅助元件的是()。
对公安机关移送起诉的案件,人民检察院决定不起诉的,应将不起诉决定书送至
简述企业承担社会责任的必然性。
甲型病毒性肝炎病程中传染性最强的是
常用作保护剂的是
按照相关法律规定,我国的城乡规划体系由城市规划、镇规划、乡规划和村庄规划组成。()
根据《全国建筑市场各方主体不良行为认定标准》,下列选项中可被认定为施工单位工程质量不良行为的有()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
某生产企业为增值税一般纳税人,2011年10月份的生产经营情况如下:(1)进口原材料一批,支付给国外买价100万元,包装材料10万元,到达我国海关以前的运输装卸费6万元、保险费9万元,从海关运往企业所在地支付运输费5万元;(2)进口两台
最新回复
(
0
)