首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一个瓷质容器,内壁和外壁的形状分别为抛物线和绕y轴的旋转面,容器的外高为10,比重为25/19。把它铅直地浮在水中,再注入比重为3的溶液。问欲保持容器不沉没,注入液体的最大深度是多少?(长度单位为厘米)
一个瓷质容器,内壁和外壁的形状分别为抛物线和绕y轴的旋转面,容器的外高为10,比重为25/19。把它铅直地浮在水中,再注入比重为3的溶液。问欲保持容器不沉没,注入液体的最大深度是多少?(长度单位为厘米)
admin
2020-12-10
28
问题
一个瓷质容器,内壁和外壁的形状分别为抛物线
和
绕y轴的旋转面,容器的外高为10,比重为25/19。把它铅直地浮在水中,再注入比重为3的溶液。问欲保持容器不沉没,注入液体的最大深度是多少?(长度单位为厘米)
选项
答案
容器体积V=π∫
0
10
10ydy=500π, 容器的容积是由抛物线y=[*]+1(1≤y≤10)绕y轴旋转一周所得立体的体积,即 V
1
=π∫
1
10
10(y-1)dy=405π, 所以容器重量为 [*]。 设注入液体的最大深度为h,则注入液体的重量为 [*]。 此时排开水的体积恰好是容器的体积500π,而水的比重为1, 所以有[*]+15πh
2
=500π,解得h=5。
解析
转载请注明原文地址:https://kaotiyun.com/show/hP84777K
0
考研数学二
相关试题推荐
解微分方程y2dx一(y2+2xy—x)dy=0.
y=3x/2或3x-2y=0
4
设函数f(x)在(―a,a)(a>0)内连续,在x=0处可导,且f′(0)≠0.(Ⅰ)求证:对任意给定的x(0<x<a),存在0<θ<1,使(Ⅱ)求极限
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
已知同阶方阵A,B满足:A2-B2=(A+B)(A-B)=(A-B)(A+B),试证:(A+B)2=A2+2AB+B2.
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;
求微分方程y’’(x+y2)=y’满足初始条件y(1)=y’(1)=1的特解。
方程yy〞=1+yˊ2满足初始条件y(0)=1,yˊ(0)=0的通解为_______.
随机试题
以下关于道德与法律的联系的说法错误的是()。
A.血浆白蛋白降低B.血清抗核抗体阳性C.血清Ⅳ型胶原升高D.AFP显著升高E.血浆抗线粒体抗体阳性原发性胆汁性肝硬化的特征性诊断依据是
下列哪个参数最能表示药物的安全性
下列书籍中,属于官刻的有()。
资本主义法维护以剥削雇佣劳动为基础的资本主义私有制,确立了“私有财产神圣不可侵犯”“契约自由”“过错责任”等原则。()
简要分析说明发达国家跨国公司向新兴市场国家进行外国直接投资的动因与战略演变。[南开大学2011国际商务硕士]
問2?優勝を祈って、みんなで応援した。優
机にきれいな食器が並べて()。
MartinLutherKing,Jr.whodeliveredafamousspeechnamedIHaveaDreamwastheleaderof_____inU.S.A
IntheUnitedStates,thefirstdaynurserywasopenedin1854.Nurserieswereestablishedinvariousareasduringthe【C1】______
最新回复
(
0
)