首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A和B均为n阶方阵,且满足A2=A,B2=B,(A+B)2=A+B,证明:AB=0.
设A和B均为n阶方阵,且满足A2=A,B2=B,(A+B)2=A+B,证明:AB=0.
admin
2020-06-05
7
问题
设A和B均为n阶方阵,且满足A
2
=A,B
2
=B,(A+B)
2
=A+B,证明:AB=0.
选项
答案
由于A
2
=A,B
2
=B,(A+B)
2
=A+B,而 (A+B)
2
=A
2
+AB+BA+B
2
=A+AB+BA+B=A+B 所以AB+BA=0,即AB=﹣BA.两边左乘A得A
2
B=﹣ABA.再由AB=﹣BA及A
2
=A得 AB=A
2
B=﹣ABA=﹣(AB)A=﹣(﹣BA)A=BA
2
=BA 即AB=BA.由等式AB=﹣BA=BA得AB=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/hfv4777K
0
考研数学一
相关试题推荐
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
矩阵A=舍同于
设A为三阶矩阵,1,1,2是A的三个特征值,α1,α2,α3分别为对应的三个特征向量,则().
设A是n阶矩阵,下列命题中正确的是()
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
[2010年]设二次型f(x1,x2,x3)=XTAX在正交变换X=QY下的标准形为y12+y12,且Q的第3列为.求矩阵A;
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设3阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=______
(2003年试题,二)设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)
(03年)设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解;则秩(A)=秩(B);
随机试题
下列选项中,属于保险合同内容的有()。
19世纪初期欧洲空想社会主义的代表人物不包括()
冈崎片段是指()。
乳牙于出生后多久萌出()
可用于提取分离游离的羟基蒽醌的方法是()
股票分割后对股东权益总额、股东权益各项目的金额及相互间的比例没有影响,这与发放股票股利有相同之处。()
挑出推理没有错误的一项()。
下列中央银行独立性最弱的是()。
相信学过数据结构和编译原理的同学们都知道KMP算法和LR(K)算法有多么不可思议,然而此书中这样的算法比比皆是!DonaldE.Knuth是一位理论家。然而,他在理论以外也同样做出惊人的成就。鼎鼎大名的排版软件Tex,就是他的作品。此外,还有Metafo
Itisunderstoodthatinafavorableclimate______.ThepeoplehadtoleavetheregionofNewMexicobecause______.
最新回复
(
0
)