首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程 BA-1=2AB+4E,且A*α=α, 其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程 BA-1=2AB+4E,且A*α=α, 其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
admin
2019-08-06
40
问题
已知三元二次型X
T
AX经正交变换化为2y
1
2
-y
2
2
-y
3
2
,又知矩阵B满足矩阵方程
BA
-1
=2AB+4E,且A
*
α=α,
其中α=[1,1,-1]
T
,A
*
为A的伴随矩阵,求此二次型X
T
BX的表达式.
选项
答案
由条件知A的特征值为2,-1,-1,则|A|=2,因为A
*
的特征值为[*],所以A
*
的特征值为1,-2,-2.由已知,α是A
*
关于λ=1的特征向量,也就是α是A关于λ=2的特征向量. 由[*]得2ABA
-1
=2AB+4E=>B=2(E-A)
-1
,则B的特征值为-2,1.1,且Bα=-2α.设B关于λ=1的特征向量为β=[x
1
,x
2
,x
3
]
T
,又B是实对称阵,α与β正交,故x
1
+x
2
-x
3
=0,解出β
1
=[1,-1,0]
T
,β
2
=[1,0,1]
T
,令 [*] 故X
T
BX=-2x
1
x
2
+2x
1
x
3
+2x
2
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hwJ4777K
0
考研数学三
相关试题推荐
设方程组有无穷多个解,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A*+3E|.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别二阶连续可导和二阶连续可偏导,则=______.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:为参数σ2的无偏估计量.
设A,B是两个随机事件,P(A|B)=0.4,P(B|A)=0.4,=0.7,则P(A+B)=______
设二阶常系数线性微分方程y"+αy’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α,β,γ,并求该方程的通解.
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
设随机变量X在(0,1)上服从均匀分布,现有一常数a,任取X的四个值,已知至少有一个大于a的概率为0.9,问a是多少?
设X1,X2,…,Xn是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
随机试题
关于SQL查询,以下说法不正确的是()。
无论何种金属,温度升高时腐蚀都加剧。()
“正气存内,邪不可干”说明正气可
关于营养不良的治疗和护理,下列不正确的是
根据《公司法》的规定,股份有限公司董事长的产生方式是()。
有一个或一个以上B类不合格,也可能含有C类不合格,但不含有A类不合格的单位产品,称为()。
运输易燃、易爆、易腐的物品时,承运人通过()来降低风险。
长江是我国的第一大河,由于传统习惯,其在不同的江段,又有不同的名称,其中“九曲回肠”说的是长江的哪个流域段?()
握手有伸手先后的规矩,下列说法正确的是:
【B1】【B18】
最新回复
(
0
)