首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,二)设矩阵是满秩的,则直线与直线( ).
(1998年试题,二)设矩阵是满秩的,则直线与直线( ).
admin
2013-12-27
80
问题
(1998年试题,二)设矩阵
是满秩的,则直线
与直线
( ).
选项
A、相交于一点
B、重合
C、平行但不重合
D、异面
答案
A
解析
本题综合考查了线性代数与空间解析几何中的若干知识点,具有较强综合性.首先,记点P
1
为(a
1
,b
1
,c
1
),P
2
为(a
2
,b
2
,c
2
),P
3
为(a
3
,b
3
,c
3
),向量
由已知矩阵满秩,则其行向量组线性无关,因此由解析几何知识可知,三向量
不共面,因此必有三点P
1
,P
2
。P
3
不共线,又由题设,直线
通过点P
3
,以
为方向向量,而直线
通过点P
1
,以
为方向向量,由前述已知,P
1
,P
2
,P
3
不共线,可得出两直线必相交于一点,选A.解析二经初等变换矩阵的秩不变,即由
知后者的秩仍为3,故而两直线的方向向量v
1
=(a
1
一a
2
,b
1
一b
2
,c
1
一c
2
)与v
2
=(a
2
一a
3
,b
2
一b
3
,c
2
一c
1
)线性无关,可排除选项B和C.在这两条直线上各取一点(a
3
,b
3
,c
3
)和(a
1
,b
1
,c
1
),可构造另一个向量v
3
=(a
3
一a
1
,b
3
一b
1
,c
3
一c
1
).若v
1
,v
2
,v
3
共面,则两条直线相交;若v
1
,v
2
,v
3
不共面,则两直线异面,不相交.此时可用混合积
或观察出v
1
+v
2
+v
3
=0知,正确答案为A.
转载请注明原文地址:https://kaotiyun.com/show/iC54777K
0
考研数学一
相关试题推荐
设函数f(x)在x=0的某邻域内连续,且,则在x=0处f(x)()
设A=,求一个可逆矩阵P,使PA为行最简形矩阵.
求下列矩阵的秩:
设对于半空间x>0内的任意光滑有向封闭曲面∑,都有其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)
设y1=ex/2+e-x+ex,y2=2e-x+ex,y3=ex/2+ex是某二阶常系数非齐次线性方程的解,则该方程的通解是()
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
设广义积分收敛,则α的范围为().
写出下列级数的通项:
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
随机试题
工业甲醛溶液一般偏酸性,主要是由于该溶液中的()所造成的。
羚羊角、天麻、钩藤的功效共同点是
肾气丸的功用是
住房公积金管理的决策机构是()。[2007年考题]
民间非营利组织净资产是指民间非营利组织的资产减去负债后的余额,包括盈余公积和未分配利润。()
行为者个人将社会规范化为自己的观念,并对自己行为实施的控制,称为()。
有人在谈到美军虐待俘虏的照片时说道:如果不想在做蠢事时被当场捉住,就不要做蠢事。下面哪一句话所表达的意思与上面这句话的意思不同?
下列叙述中错误的是()。
为了隐藏在文本框中输入的信息,用占位符代替显示用户输入的字符,需要设置的属性是( )。
IhavebeenreadingalotonmyiPadrecently,andIhavesome【46】______(complain)—notabouttheiPaditselfbutaboutthesta
最新回复
(
0
)