首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
admin
2019-08-23
38
问题
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
=ξf′(ξ).
选项
答案
令φ(χ)=f(b)lnχ-f(χ)lnχ+f(χ)lna,φ(a)=φ(b)=f(b)lna. 由罗尔定理,存在ξ∈(a,b),使得φ′(ξ)=0. 而φ′(χ)=[*]-f′(χ)lnχ+f′(χ)lna, 所以[*][f(b)-f(ξ)]-f′(ξ)(lnξ-lna)=0,即[*]=ξf′(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/izA4777K
0
考研数学二
相关试题推荐
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:方程组Ax=b的任一解均可由η,η+ξ1,…,η+ξn-r线性表出.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
证明:曲线上任一点的切线的横截距与纵截距之和为2.
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[-a,a],使得
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫一aaf(x)dx.
随机试题
在最惠国条款中规定,只有缔约对方能像第三国那样,向它提供同等的报偿,才把给予第三国的优惠提供给缔约对方的是指()
下列关于《建设工程施工合同(示范文本)》GF-2017-0201中有关合同价格和费用的说法,不正确的是()。
目前,上海证券账户当日开立,当日即可用于交易。深圳证券账户当日开立,次一交易日生效。( )
自营业务中涉及()等方面的重大决策应当经过集体决策并采取书面形式,由相关人员签字确认后存档。
消费税的应税消费品共有()个品目。
已知利润对单价的敏感系数为2,为了确保下年度企业不亏损,单价下降的最大幅度为()。
2016年6月,甲公司将一台价值900万元的机床委托乙仓库保管,双方签订的保管合同约定:保管期限从6月21日至10月20日,保管费用2万元,由甲公司在保管到期提取机床时一次付清。8月,甲公司急需向丙公司购进一批原材料,但因资金紧张,暂时无法付款。
已知二元一次方程3x2一7x+2=0的两根分别为椭圆和双曲线的离心率e1、e2,则3(e2一e1)=().
《教师资格条例》规定,被撤销教师资格的,自撤销之日起()不得重新申请认定教师资格,其教师资格证由县级以上人民政府教育行政部门收缴。
设f(x+1)=af(x)总成立,f’(0)=b,a≠1,b≠1为非零常数,则f(x)在点x=1处
最新回复
(
0
)