首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(A)=f(B)=0。证明: (I)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ); (Ⅱ)存在一点η∈(a,b),使得f’(η)=一3f(η)g’(η)。
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(A)=f(B)=0。证明: (I)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ); (Ⅱ)存在一点η∈(a,b),使得f’(η)=一3f(η)g’(η)。
admin
2016-03-16
49
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(A)=f(B)=0。证明:
(I)存在一点ξ∈(a,b),使得f’(ξ)=2f(ξ);
(Ⅱ)存在一点η∈(a,b),使得f’(η)=一3f(η)g’(η)。
选项
答案
(I)令φ(x)=e
-2
f(x),因为f(A)=f(B)=0,所以φ(A)=φ(B)=0,根据罗尔定理,存在一点ξ∈(a,b),使得φ’(ξ)=0,而φ’(x)=e
-2x
[f’(x)一2f(x)]且e
-2x
≠0,所以f’(ξ)=2f(ξ)。 (Ⅱ)令h(x)=f9x)e
3g(x)
,因为f(A)=f(B)=0,所以h(A)=h(B)=0,根据罗尔定理,存在一点η∈(a,b),使得h’(η)=0,而h’(x)=e
3g(x)
[f’(x)+3f(x)g’(x)]且e
3g(x)
≠0,所以f’(η)=一3f(n)g’(η)。
解析
转载请注明原文地址:https://kaotiyun.com/show/j7U4777K
0
考研数学三
相关试题推荐
2020年9月8日,商务部前部长陈德铭在“服务业扩大开放暨企业全球化论坛”上发言表示,经历了抗疫的洗礼和反思,全球价值链会趋向短链化和区域化,推动经济增长的生产力将更多地依靠科技进步,一个数字化、网络化的智能社会将势不可挡。未来,中国将更注重科技人才,加紧
社会主义经过长期的发展,在高度发达的基础上,最终将走向共产主义。共产主义不仅是一种科学的理论和这种理论指导下的现实的运动,而且是一种未来的社会制度和社会形态。共产主义社会的基本特征是
中共中央总书记、国家主席、中央军委主席习近平4月8日给武汉市东湖新城社区全体社区工作者回信,再次肯定城乡广大社区工作者在疫情防控斗争中发挥的重要作用,向他们致以诚挚的慰问,并勉励他们为彻底打赢疫情防控人民战争、总体战、阻击战再立新功。 习近平在回信中说
马克思指出“作为劳动过程和价值形成过程的统一,生产过程是商品生产过程;作为劳动过程和价值增殖过程的统一,生产过程是资本主义的生产过程,是商品生产的资本主义形式。”资本主义生产过程包括()。
“二十四节气”形成于中国黄河流域,以观察该区域的天象、气温、降水和物候的时序变化为基准,是人们把握气候变化、安排农业生产的重要指南。不同地区、不同时代的人们对“二十四节气”进行了动态完善。这说明()。
在“五位一体”总体布局中生态文明建设是其中一位,在新时代坚持和发展中国特色社会主义基本方略中坚持人与自然和谐共生是其中一条基本方略,在新发展理念中绿色是其中一大理念,在三大攻坚战中污染防治是其中一大攻坚战。这“四个一”体现了()。
证明:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2.
设一平面通过从点(1,-1,1)到直线的垂线,且与平面z=0垂直,求此平面的方程.
设f(x,y)在点(0,0)的某个邻域内连续,求极限
设生产函数为Q=ALaKβ,其中Q是产出量,L是劳动投入量K是资本投入量,而A,a,β均为大于零的参数,则当Q=1时K关于L的弹性为_________.
随机试题
在任何一次测量中,看测量结果能否达到预期的目的,主要取决于所应用的___________。
求积分
患者,女性,18岁。突然剧烈头痛伴呕吐,查体:颈项强直,克氏征阳性,布氏征阳性,体温37.0℃,既往体健。CT示双侧裂池及纵裂池内等密度影。患者每日尿量必须保证超过
总产程超过多长时间为滞产
某小型微利企业2016年当年应纳税所得26万元,弥补上年亏损后尚余5.1万元,该企业本年度应纳所得税税额为()万元。
某初中班主任夏某在学校晨读期间让本班陈同学到校外为自己买早点,陈同学过马路时,不幸遭遇车祸受伤。请问责任应由()。
关于《聊斋志异》的说法不正确的是:
某一研究者需要收集近年来国家教育事业发展的有关数据,最可靠的信息来源是()。
个人电脑属于()。
她在小花园里一个人看书喜欢坐
最新回复
(
0
)