首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4为4维列向量,满足α2,α3,α4线性无关,且α1+α3=2α2. 令A=(α1,α2,α3,α4),β=α1+α2+α3+α4.求线性方程组Aχ=β的通解.
设α1,α2,α3,α4为4维列向量,满足α2,α3,α4线性无关,且α1+α3=2α2. 令A=(α1,α2,α3,α4),β=α1+α2+α3+α4.求线性方程组Aχ=β的通解.
admin
2017-11-09
97
问题
设α
1
,α
2
,α
3
,α
4
为4维列向量,满足α
2
,α
3
,α
4
线性无关,且α
1
+α
3
=2α
2
.
令A=(α
1
,α
2
,α
3
,α
4
),β=α
1
+α
2
+α
3
+α
4
.求线性方程组Aχ=β的通解.
选项
答案
先求Aχ=0的基础解系. 由于α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
-α
3
,得R(A)=3.又因为α
1
-2α
2
+α
3
+0.α
4
=0, 故Aχ=0基础解系为(1,-2,1,0)
T
.再求Aχ=β的一个特解. 由于β=α
1
+α
2
+α
3
+α
4
,故(1,1,1,1)
T
为一个特解.所以,Aχ=β的通解为 (1,1,1,1)
T
+k(1,-2,1,0)
T
,k为常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/jBX4777K
0
考研数学三
相关试题推荐
函数f(x)在x=1处可导的充分必要条件是().
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
已知f(x,y)=,设D为由x=0、y=0及x+y=t所围成的区域,求F(t)=
独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p,假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a.
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f"(0)以及极限
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α1,α1
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f’"(ξ)=3.
设P(A)>0,P(B)>0.证明:A,B互不相容与A,B相互独立不能同时成立.
求证:当x>0时,不等式arctanx+成立.
随机试题
现代意义的财产税始创于()
foreigncurrencyreserves
急性失血时,最先出现的代偿反应是
患儿,10岁。课间活动时,突然两眼凝视,呆立不动,呼之不应,持续约10秒后恢复正常。以往有类似发作。考虑为
甲的丈夫强奸了丙,案发后甲多次找到丙,要求丙将强奸说成通奸,并拿出5000元作为给丙的“改口”补偿,丙未同意。甲便将丙拉到家中,强迫丙按照其事先写好的说明是通奸的材料抄写一份并按上指印。丙仍不同意,甲便一直不允许丙离开,4天后丙才被警察解救。关于甲的行为定
国产水准仪按精度不同划分为()个等级。
提高企业经营安全性的途径有()。
在下列描述中,对有效资本市场涵义的描述不正确的是()。
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好“tCourse”、“tGrade”、“tStudent”三个关联表对象和一个空表“tSinfo”,试按以下要求完成设计:创建一个查询,计算每名学生所选课程的学分总和,并依次显示“
PeopleinthemassadvertisingbusinessandotherswhostudyAmericansocietyhavebeenveryinterestedinthequestion:Whatdo
最新回复
(
0
)