设有极坐标系下的累次积分J=dθ∫0sinθf(rcosθ,rsinθ)rdr, (Ⅰ)将J写成直角坐标系下先对y后对χ积分的累次积分则是J=_______; (Ⅱ)将J改成先对θ后对r积分的累次积分则是J=_______.

admin2020-03-10  15

问题 设有极坐标系下的累次积分J=dθ∫0sinθf(rcosθ,rsinθ)rdr,
    (Ⅰ)将J写成直角坐标系下先对y后对χ积分的累次积分则是J=_______;
    (Ⅱ)将J改成先对θ后对r积分的累次积分则是J=_______.

选项

答案(Ⅰ)[*];(Ⅱ)[*]f(rcosθ,rsinθ)rdθ.

解析 (Ⅰ)将累次积分-,写成J=f(χ,y)dσ,
    其中,D的极坐标表示D:≤θ≤π,0≤r≤sinθ,于是得D的直角坐标形式为(如图24—3(a))

    χ2+y2≤y(由r2≤rsinθ而得),χ≤0,
    即χ2,χ≤0.
    现重新配限得
    J=
    (Ⅱ)在Oθr直角坐标系中(如图24—3(b)),
    J=f(rcosθ,rsinθ)rdrdθ.

    当≤0≤π时,0≤π-θ≤,由r=sinθ=sin(π-θ)
    π-θ=arcsinr,θ=π-arcsinr.
    因此J=f(rcosθ,rsinθ)rdθ.
转载请注明原文地址:https://kaotiyun.com/show/jZS4777K
0

最新回复(0)