首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设S为平面x-y+z=1介于三坐标平面间的有限部分,法向量与z轴交角为锐角,f(x,y,z)连续,计算 I=∫∫S(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdx+[f(x,y,z)+z]dxdy.
设S为平面x-y+z=1介于三坐标平面间的有限部分,法向量与z轴交角为锐角,f(x,y,z)连续,计算 I=∫∫S(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdx+[f(x,y,z)+z]dxdy.
admin
2016-07-22
30
问题
设S为平面x-y+z=1介于三坐标平面间的有限部分,法向量与z轴交角为锐角,f(x,y,z)连续,计算
I=∫∫
S
(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdx+[f(x,y,z)+z]dxdy.
选项
答案
将S投影到xOy平面,其投影域(如图1.6-14)为 D={(x,y)|x-y≤1,x≥0,y≤0}. 从S的方程解出 z=1-x+y. [*] 方法一 化成第一型曲面积分,S与z轴交角为锐角的法向量为 n=(1,-1,1),n
0
=(1,-1,1),则 [*] 方法二 直接将该积分化为一个二重积分.由 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jew4777K
0
考研数学一
相关试题推荐
求f(x)=∫01|x-t|dt在[0,1]上的最大值、最小值.
设函数f(x)在[0,1]上可微,且满足f(1)=1/λ∫0λxf(x)dx(0<λ<1),证明:存在ξ∈(0,1),使得f’(ξ)=
设函数y=y(x)由方程组确定,求
某企业做销售某种商品的广告可通过电台及报纸两种方式,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)和报纸广告费用x2(万元)之间的关系如下:R=15+14x1+32x2-8x1x2-2x12-10x22在广告费用不限的情况下,求最
利用换元法计算下列二重积分:设f(t)为连续函数,证明:f(x+y)dxdy=∫-11f(t)dt,D:|x|+|y|≤1.
曲面x2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为().
设A为三阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又α=且A*α=α.(Ⅰ)求正交矩阵Q;(Ⅱ)求矩阵A.
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1-1AP1=().
已知矩阵A=设三阶矩阵B=(α1,α2,α3)满足B2=BA.记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合.
设Dk是圆域D={(x,y)|x2+y2≤1}在第k象限的部分,记Ik=(y-x)dxdy(k=1,2,3,4),则().
随机试题
碘伏消毒的作用原理是()
现代民主理论认为,现代国家行政权力的根本来源是【】
有关正常关节X线表现的叙述,错误的是
根据相关法规以及《标准施工招标资格预审文件》中的规定,采用()的资格预审方法的,凡符合资审文件中规定的初步审查标准和详细审查标准的申请人均为资格预审合格人。
某铁矿2008年8月开采铁矿石25万吨,销售其中10万吨,其余移送提炼精矿全部对外销售。该铁矿山当月应纳资源税()万元。(单位税额:12元/吨)。
下列各项中属于非货币性资产的是()。
完全竞争市场和垄断竞争市场的主要区别在于()。
健康的电影市场,在大制作主流电影、各种类型化商业电影之外,应该容纳风格、题材、类型多样的艺术电影。但是,由于如今早就不是电影形态一统天下的局面,媒介越来越多样化,而观众的消费需求也被媒介的多样化逐渐分化。所以,艺术电影如果要进入影院被观众消费,那么它必须具
A、 B、 C、 D、 B
自定义表格类中的model部分应实现的接口是()。
最新回复
(
0
)