首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
admin
2019-05-10
27
问题
设A=E一ξξ
T
,其中E是n阶单位矩阵,ξ是n维非零列向量,ξ
T
是ξ的转置.证明:当ξ
T
ξ=1时,A是不可逆矩阵.
选项
答案
证明时由条件ξ
T
ξ=1自然想到要利用结论,这时用反证法最简.注意到A=E一ξξ
T
≠E.如果A可逆,则得到A=E的矛盾. 证一 当ξ
T
ξ=1时,由(1)有A
2
=A.如果A可逆,则A
-1
A
2
=A
-1
A,即A=E.这与A≠E矛盾,故A不可逆. 证二 因A=E-ξξ
T
,故Aξ=ξ一ξξ
T
ξ.当ξ
T
ξ=1时,有Aξ=0.由于ξ≠0,AX=0有非零解.由命题2.1.2.6知∣A∣=0,A不可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/jjV4777K
0
考研数学二
相关试题推荐
设f(χ)=3χ2+Aχ-3(χ>0),A为正常数,问A至少为多少时,f(χ)≥20?
设f(χ)在χ0的邻域内四阶可导,且|f(4)(χ)|≤M(M>0).证明:对此邻域内任一异于χ0的点χ,有其中χ′为χ关于χ0的对称点.
设y=f(χ)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;(2)设f(χ)在(0,1)内可导,且f′(χ)>-,
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=_______.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______.
矩阵的非零特征值是a3=_______.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设矩阵A=,三阶矩阵B满足ABA*=E—BA-1,试计算行列式|B|。
随机试题
患儿,女,3岁。颈部肿物约1cm,稍高起于皮肤,圆形,边界不甚清楚,皮表正常。肿块呈青蓝色,质软,有压缩性,压迫时消失,去压后即复原。最可能的诊断为
大量不保留灌肠的适应证不包括
对增感率大小无直接影响的是
唇淋巴的叙述中。错误的是
下列规范性法律文件属于狭义的法律的是()。
工业机器人的编程方式有()。
在对文物修缮、保养及迁移时,应严格遵守的一条法定原则是()。
一个长方体形状的盒子长、宽、高分别为20厘米、8/厘米和2厘米,现在要用一张纸将其六个面完全包裹起来,要求从纸上剪下的部分不得用作贴补,请问这张纸的大小可能是下列哪一个?( )
为提高移栽树苗的成活率,常采用根部带土和去掉部分枝叶的措施,其目的是:
TheBritishshowagreatloveforthecountrysideanditisreallyniceandbeautiful.Alotofpeopledream(梦想)aboutlivingi
最新回复
(
0
)