首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1 ,α2 ,α3 ,α4为四维非零列向量,A=[α1 ,α2 ,α3 ,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]T ,则方程组A*X=0的基础解系为( ).
设α1 ,α2 ,α3 ,α4为四维非零列向量,A=[α1 ,α2 ,α3 ,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]T ,则方程组A*X=0的基础解系为( ).
admin
2016-12-16
64
问题
设α
1
,α
2
,α
3
,α
4
为四维非零列向量,A=[α
1
,α
2
,α
3
,α
4
],A
*
为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]
T
,则方程组A
*
X=0的基础解系为( ).
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
C、α
2
,α
3
,α
4
D、α
1
+α
2
,α
2
+α
3
α
3
+α
4
,α
4
+α
1
答案
C
解析
由AX=0的基础解系所含解向量个数为1知,
n一r(A)=4一r(A)=1,故r(A)=3.
因而可确定r(A
*
)=1,于是A
*
X=0的一个基础解系含3个解向量.
由AX=0的基础解系仅含有一个解向量知,r(A)=3,从而r(A
*
)=1,于是方程组
A
*
X=0的基础解系中仅含3个解向量.
又 A
*
A=A
*
[α
1
,α
2
,α
3
,α
4
]=|A|E=0,
所以向量α
1
,α
2
,α
3
,α
4
是方程组A
*
X=0的解,因为[1,0,2,0]
T
是AX=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关,从而向量组α
1
,α
2
,α
3
和向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除(A)、(B)、(D).又因r(A)=r(α
1
,α
2
,α
3
,α
4
)=3,故α
2
,α
3
,α
4
线性无关、仅(C)入选,
由解一知,α
1
,α
2
,α
3
,α
4
均为A
*
X=0的解向量,且其基础解系只含3个解向量.
由α
1
+2α
3
=0得
α
1
=0α
2
一2α
3
+0α
4
,
即α
1
可由α
2
,α
3
,α
4
线性表示,又
r(α
1
,α
2
,α
3
,α
4
)=3,
所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
X=0的一个基础解系,仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/jnH4777K
0
考研数学三
相关试题推荐
没数列{xn}满足o<x<1<π,xn+1=sinxn(n=l,2,…).计算
证明f(x)是以π为周期的周期函数;
设某产品的需求函数为Q=Q(p),其对价格P的弹性εP=2,则当需求量为10000件时,价格增加1元会使产品收益增加______元.
y=2x的麦克劳林公式中xn项的系数是_________.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
设an>0(n=l,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P{丨X+Y丨≥6}≤___________.
将10双不同的鞋随意分成10堆,每堆2只,以X表示10堆中恰好配成一双鞋的堆数,则EX=______.
设z=f(x,y),x=g(y,z)+其中f,g,φ在其定义域内均可微,求
随机试题
感染性休克手术治疗时机是
有关散剂特点叙述错误的是
王氏投资有限公司裁员,被裁员的李某由于被该公司拖欠了13个月的工资而将该公司告上了法庭。李某一家全靠李某工资维持生计,目前生活非常困难。对于此案先予执行的说法,正确的有()
根据《基础测绘条例》,基础测绘工作应当遵循的原则有()。
在进行统计分组时,假设分为两组:60~70,70~80。按照习惯规定,70这一数值()。
一般来说,为了保护数据在传输过程中的安全,主要采用()技术。
2018年我国国内旅游人数55.39亿人次,比上年同期增长10.8%。其中,城镇居民41.19亿人次,增长12.0%;农村居民14.20亿人次,增长7.3%。国内旅游收入5.13万亿元,上年同期增长12.3%。其中,城镇居民花费4.
青少年期思维特质的最突出特点是
设其中f(x)连续,且则F’(0)=().
【B1】【B19】
最新回复
(
0
)