首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1 ,α2 ,α3 ,α4为四维非零列向量,A=[α1 ,α2 ,α3 ,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]T ,则方程组A*X=0的基础解系为( ).
设α1 ,α2 ,α3 ,α4为四维非零列向量,A=[α1 ,α2 ,α3 ,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]T ,则方程组A*X=0的基础解系为( ).
admin
2016-12-16
82
问题
设α
1
,α
2
,α
3
,α
4
为四维非零列向量,A=[α
1
,α
2
,α
3
,α
4
],A
*
为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]
T
,则方程组A
*
X=0的基础解系为( ).
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
C、α
2
,α
3
,α
4
D、α
1
+α
2
,α
2
+α
3
α
3
+α
4
,α
4
+α
1
答案
C
解析
由AX=0的基础解系所含解向量个数为1知,
n一r(A)=4一r(A)=1,故r(A)=3.
因而可确定r(A
*
)=1,于是A
*
X=0的一个基础解系含3个解向量.
由AX=0的基础解系仅含有一个解向量知,r(A)=3,从而r(A
*
)=1,于是方程组
A
*
X=0的基础解系中仅含3个解向量.
又 A
*
A=A
*
[α
1
,α
2
,α
3
,α
4
]=|A|E=0,
所以向量α
1
,α
2
,α
3
,α
4
是方程组A
*
X=0的解,因为[1,0,2,0]
T
是AX=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关,从而向量组α
1
,α
2
,α
3
和向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除(A)、(B)、(D).又因r(A)=r(α
1
,α
2
,α
3
,α
4
)=3,故α
2
,α
3
,α
4
线性无关、仅(C)入选,
由解一知,α
1
,α
2
,α
3
,α
4
均为A
*
X=0的解向量,且其基础解系只含3个解向量.
由α
1
+2α
3
=0得
α
1
=0α
2
一2α
3
+0α
4
,
即α
1
可由α
2
,α
3
,α
4
线性表示,又
r(α
1
,α
2
,α
3
,α
4
)=3,
所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
X=0的一个基础解系,仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/jnH4777K
0
考研数学三
相关试题推荐
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α23,α3
设函数f(x)在(-∞,+∞)内连续,且试证:若f(x)为偶函数,则F(x)也是偶函数;
计算不定积分
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设f(x)在[0,1]上二阶可导且f〞(x)<0,证明:
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则f’(0)=
根据二重积分的几何意义,确定下列积分的值:
计算,D:ε2≤x2+y2≤1,并求此积分当ε→0+时的极限.
随机试题
1:2液为
呼吸衰竭急性加重和失代偿期的最常见诱因是
由于人机系统中的可靠性的因素众多且随机变化,因此人的可靠性是不稳定的,则人机系统可靠度采用()来提高。
下列各项表述中,正确的有()。
公司证券是指公司、企业等经济法人为筹集投资资金或与筹集投资资金直接相关的行为而发行的证券,其中()是证明持有者拥有购买发行公司一定数量股份的专有权的凭证。
操作系统只能控制计算机中的软件。()
《中小学教育质量综合评价指标框架(试行)》中的“学业负担状况关键指标”不包括()
欣赏是用眼睛去观察,用耳朵去聆听,用心灵去感悟。请以“学会欣赏”为题,发表一篇演讲。
(2013年真题)战国时期,各诸侯国的立法指导思想主要包括
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得
最新回复
(
0
)